

Minería y Geología / v.26 n.4 / octubre-diciembre / 2010 / p. 104-125 ISSN 1993 8012

Received: January 2009 / Accepted: May 2010

 104

Abstract
Most of geostatistical software have a limited number of kriging
models and are not flexible enough to allow to define new or
complicated models. With the aim to obtain a flexible algorithm for
kriging was used a notation of multivariate regionalized random
function (RF) as a univariate RF Z(x, i), with a drift m(x, i, j), were i and j
indicate variable identifiers. A geostatistical library named
OpenKriging was programed in C++. This library has a function
callable from scripts written in Python, able to construct the kriging
system of equations of the above mentioned RF, with no restriction in
the number of spatial dimensions, variables and monomials in the
drift. Two types of drift monomials where implemented, geographical
and external drift. The drift monomials can be independent or
dependent. The function responsible to build the kriging system of
equations was not programed for a predefined model, the model is
defined by the user, passing from Python the appropriate data and
parameters and modifying from Python the system prior to solve it.
The resulting library can handle the most commons models, and also
new or uncommon models. The library is easy to modify to increase
the functionality. The functionality was shown trough two examples of
kriging models: one with a complicated definition, the other can be
considered as uncommon.

Key Words
C++, geostatistical software, GPL, kriging, multivariate random functions,
n-dimensional, OpenKriging, Python.

How to rewrite multivariate random
functions as univariate to do cokriging.

A flexible algorithm

Adrián Martínez Vargas

Minería y Geología / v.26 n.4 / October-December / 2010 / p. 104-125 ISSN 1993 8012

Recibido: enero 2009 / Aceptado: mayo 2010

105

Cómo reescribir funciones aleatorias
multivariadas como univariadas para

hacer cokrigeage. Un algoritmo flexible

Resumen
La mayoría de los software para geoestadísticas poseen un limitado
número de modelos de krigeage y no son lo suficientemente flexibles
para definir nuevos o complicados modelos. Con el objetivo de
obtener un algoritmo flexible de krigeage se empleó la notación de
funciones aleatorias regionalizadas (RF) multivariadas escritas como
una RF univariada Z(x, i), con un drift m(x, i, j), donde i y j son
identificadores de variables. Se programó en C++ una librería
geoestadística llamada OpenKriging, con una función que se puede
llamar desde código escrito en Python, la cual es capaz de construir el
sistema de krigeage de la RF mencionada, sin restricciones en el
número de dimensiones espaciales, variables y monomios en el drift.
Se implementaron dos tipos de drift: los geográficos y los drift
externos, estos pueden ser independientes o no. La función
responsable de construir el sistema de ecuaciones krigeage no se
programó para un modelo predefinido, el modelo es definido por el
usuario pasando desde el código en Python los datos y argumentos
apropiados y modificando el sistema antes de resolverlo. La librería
resultante puede asimilar muchos de los modelos conocidos de
krigeage y también modelos nuevos o poco comunes; esta es fácil de
modificar para incrementar su funcionalidad, la cual se mostró a
través de dos ejemplos de modelos de krigeage: uno con definición
complicada y el otro poco común.

Palabras clave
C++, funciones aleatorias multivariadas, GPL, krigeage, n-dimensional,
OpenKriging, Python, software para geoestadística.

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

INTRODUCTION
Earliest implementations of kriging in geostatistical libraries were
limited to a set of bi-variate regionalized random functions (RF) ,
up to three spatial dimensions in coordinates vector and a reduced
set of kriging models. In the legendary Geostatistical Library (GSLIB)
by Deutsch, Clayton and Journel (1998) kriging options were
implemented in the packages: 2D Kriging (kb2d), 3-D Kriging
Program (kt3d), 3-D Cokriging Program (cokb3d) and the Indicator
Kriging Program (ik3d). The prefix 3d and 2d indicate that those
packages are designed for two and three dimensions only. In GSLIB
cokriging was implemented for only two variables.

This tendency remains in some modern geostatistical packages, for
example, in the popular GsTL: the Geostatistics Template Library,
presented and explained by Remy (2001, p. 26) the cokriging method
is implemented for only two variables, and only up to three
dimensions are allowed. In the software SGeMS, the graphical front
end of GsTL (Remy et al. 2006) the set of kriging models
implemented is limited to: the univariate versions of simple kriging,
ordinary kriging and kriging with trend, this last one limiting the drift
definition to a total of nine possible monomials (X, X2, Y, Y2, Z, Z2,
XY, XZ, YZ). In the bi-variate kriging models the options are: simple
cokriging, ordinary cokriging and two variants of Markov model. Remy
et. al. (2006) also gave an implementation of indicator kriging.

The commercial software ISATIS has the largest number of
geostatistical techniques implemented. This software includes a wide
set of external drifts, also covers from the classical implementation of
simple kriging to disjunctive kriging, some special models, for
example: kriging several variables linked through partial derivatives
and kriging with measurement error (Bleines et al. 2007). Despite
the potential of this software the number of dimensions of the
coordinate space is limited up to three, and the implementation of
new models is limited or impossible because is not open source.

A different approach was introduced by a new generation of
libraries that run over scripting programming languages as Matlab,
Octave, or R. Gebbers R. (Trauth 2006, p. 177) introduced the use of
geostatistics in Matlab throw a pure Matlab code, with a deep
vectorized but intuitive approach. The code presented by Gebbers R.
only covers the ordinary kriging, but can be modified to be extended to
any model. Another example was shown by Diggle & Ribeiro-Jr (2007),
they presented two packages for R: geoR and geoRglm (Ribeiro &
Diggle 2001, Christensen & Ribeiro 2002), both for model based
geostatistics, including likelihood-based and Bayesian methods, but

()xZi

x

106

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

they are only implemented for problems defined in two dimensions, and
up to two variables. Another R package for geostatistics is gstat, by
Pebesma (2004). Multivariate geostatistics in this package can handle
more than two variables distributed in a three-dimensional space.

Script languages are slow. To increase the speed in computations the
packages running over scripting languages are often programmed as
shared libraries written in C, C++ or Fortran. The script works as an
interface from where data is passed to functions inside a compiled
library, as reference in memory or as pointers. Compiled libraries are
in charge to do the heavy work: looping over large data, obtain
numerical solutions, etc.

Most of kriging algorithms implemented in open source geostatistical
libraries are designed for a fixed number of variables, dimensions
and kriging models. To modify those algorithms, with the aim to increase
the number of dimensions, variables and kriging models, is not an
efficient idea because usually large transformations of the original code
are required.

A list of some kriging models (Bleines et al. 2007): can be ordinary
kriging, simple kriging, kriging in the IRF-k case, kriging drift estimator,
kriging with external drift, kriging for filtering model components,
factorial kriging, block kriging, polygon kriging, kriging gradient
estimator, kriging for several variables linked through partial derivatives,
kriging with inequalities, kriging with measurement error, lognormal
kriging, cokriging, extended collocated cokriging, indicator kriging,
disjunctive kriging, uniform conditioning and service variables, and other
models not mentioned here. Notice that most of those kriging models can
be combined to obtain hybrid kriging models. To programming a suitable
algorithm for all base models and hybrids can be difficult.

Trough comparing kriging systems of equations for different models it can
be notice that they do not exist too many differences between many of
them. For example the kriging system of equations for drift estimation is
the same to the universal kriging one but with all covariances in the right
hand side of the equations equal to zero; to perform IRF-k kriging instead
to use covariances or variograms we use generalized covariances; to
perform disjunctive kriging we have to estimate by simple kriging the
Hermite coefficients. The differences between the kriging systems can be
summarized in two main types: 1) variation relate with the definition
of the kriging system in term of: spatial variability functions, number
of variables and drifts, 2) variation in the nature of the data we use
as input.

107

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

In the first part of this paper the idea to rewrite a multivariate set of
random functions (RF) into a single univariate RF with a

system of equations is equivalent to the system obtained by the
classical multivariate approach; in addition the method can handle
most of the kriging models mentioned above and simplify the
construction of the system of cokriging equations.

The aim of this paper is to present flexible algorithms to kriging RFs

, without limitations in the number of dimension, variables,
drift size and types, able to handle the most commons models, and
also easy to modify to implement new or uncommon models.

METHODOLOGY
A geostatistical library name OpenKriging was created. It is a shared
library that has a function named k_system. This function is the
responsible to construct the kriging system of equations for a
single target , given a RF , with a drift and a
specific model of spatial variability (Stage A). This function can be
called from a scripting code written in Python. The flexibility of this
kriging algorithm lays in the freedom that has the user to define the
kriging model to be used, passing to the function k_system the
appropriate data and options. The main data that the user has to
pass to the function are: data locations and variables , the drift
definition and the type of spatial variability. No restrictions
were imposed in the number of variables and dimensions in the
location vectors , neither in the number of monomials and their
types. In addition the user can modify the kriging system of
equation from the Python script, before to solve it.

The shared library was created to experiment existing and new
models in a single testing target (Figure 1), but can be extended to
apply kriging in many targets, looping in each target and finding
neighborhood data with a neighborhood searching function available
in the library. This approach can be implemented directly in the
shared library (Figure 3) or from Python scripts (Figure 2), because
the neighborhood searching function is also available for external
applications. This one is the stage B of development of the library
but it is not disused in this paper.

()xZi ()ix,Z
()ji,x,m

()ix,Z

v ()ix,Z ()ji,x,m

()ix,z
()ji,x,m

i
x

108

drift was discussed (Martínez-Vargas 2006). The resulting

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

Figure 1. Schematic implementation in pseudo-code of the kriging

algorithm for a single target.

Figure 2. Schematic implementation in pseudo-code of the kriging

algorithm for n targets, looping in Python.

Others auxiliary functions in the library are callable from external
applications, for example: functions to perform test of
communication, transference of the data and to obtain the kriging
matrix definition in OpenOffice Math format. It is also available a
function to calculate the mean variogram and covariance in a block,
which is necessary to calculate the standard deviation of kriging
errors from Python.

109

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

Figure 3. Schematic implementation in pseudo-code of the kriging algorithm

for n targets, looping inside the C++ library.

To create the shared library five principles were followed:

1. The source code is open, to allow any modification by the users
2. A procedural programming approach is preferable, to make as

clear as possible the code for non experimented programmers
3. The communication with external applications is important,

specially with scripting languages
4. The speed is not the main objective, but is important
5. The library is portable to common operating systems, for

example Linux and Windows.

To ensure a free access to source code the license GPL from GNU was
adopted (Free Software Foundation 2007). In principle the idea of the
shared library start by a flexible code that allows to do as many
operation possible from the scripting language, but many
modifications will be necessary to fix bugs, to add more functionality,
or to implement new kriging models in the development Stage B.

The library was programed in C++, but with C procedural
philosophy (Brokken 2008). To solve main tasks and sub-tasks a
conglomerate of functions was created, communicating each one to
the others through arguments and variables. This approach is very
intuitive for many non expert programmers. Was avoided the use
of classes, instead were used structures. Was also avoided the
definition of templates functions. With this approach only a
minimum of knowledge about C++ is required to modify the library
source code. To know about concepts related to object oriented
programing and generic programming is not necessary. Confusing

110

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

concepts as pointers were avoided as mush as possible, instead were
used reference variables defined in function's arguments as
T & variable where T is the variable type (Brokken 2008).

The matrices and vectors manipulations were implemented with TNT
version 3.0.12 (Pozo-Roldan 2004). In addition the numerical library
JAMA/C++ (Monsalve-Tobon Juan Esteban 2005) was used to solve
numerical problems. Some abstract containers from the Standard
Template Library (STL) (Brokken 2008) as vector and string were
occasionally used as extra tools. TNT and JAMA/C++ were
redistributed with the geostatistical library sources (Appendix A). The
use of extra libraries was avoided, to make easy the portability to
different operative systems.

The shared library was compiled in with GNU G++ for the operative
system Windows and Linux, and distributed as binary files. To call
those files from Python 2.x in Windows and Linux they have to be
copied inside system directories (Appendix A).

The communication with external applications was performed through
the prototype:

 extern "C"
 {
 // C-declarations go in here
 }

This prototype allows to call the external functions in the library from
scripting languages as Python or R, also from compiled softwares, for
example in C++, C# or Visual Basic.

To make an universal transference of data a set of external structures
was declared in the file “ext_globals.cc”; those structures define the
data and models that we transfer:

1. The spatial variability model
2. The search neighbor
3. The data, including the external drift in the data
4. The target, including the external drift in the target

The arrays coming from external applications are passed to the library
by reference, as classic C uni-dimensional arrays, defined with the
pointer operator as T *variable. Most of those arrays are reconverted
to TNT arrays as Array1D (int n, T *a) or Array2D (int m, int n, T *a),
where m and n are the number of columns and rows in the arrays,
T *a is an uni-dimensional array of type T with C order, often referred

111

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

T *a is an uni-dimensional array of type T with C order, often
referred to as "row-major ordering" (Pozo-Roldan 2004). This
method take the reference in memory of *variable saving running
time and memory, also allowing appropriate transference of data
between the library and external applications.

The selected scripting language to communicate with the library was
Python 2.x, the communication was performed trough the modules
ctypes version 1.0.3, and numpy version 1.3.0. In the case of the
module numpy a version equal or higher to 1.1.0 is recommended,
because allows to reading matrices from files (NumPy
community 2009). Python was selected because is easy, intuitive,
cross platform and there are a large number modules that make
easy the data manipulation, graphical user interface (GUI)
implementation and plotting. In some tests were used the Python
modules: numpy for data manipulation and scientific calculation;
Visual Python for 3D plotting and Matplotlib for 2D plotting.

To create the kriging algorithm three main objective were set:

1. they are not limitations in the number of dimensions,
2. neither in the number of variables and drift monomials,
3. the algorithm must be flexible enough to permit

modifications.

Avoiding limitation on the number of dimensions
To avoid limitation on the number of dimensions non special
algorithms are necessary to define the kriging matrix, but to
calculate the spatial variability and to search neighboring points to a
target with an (hyper)ellipsoid searching function. For example, to
estimate the variogram value between two points the anisotropy per
structure must be considered; if the anisotropy exist it is necessary
to translate, rotate and then rescale the anisotropic distance vector
to obtain an isotropic scalar distance .

In systems with one dimension the rotation is not performed. For
two or more dimensions the idea of plane rotation (also called
Givens rotations) was implemented as , where is the
rotation matrix, , the original coordinates vector and the
rotated vector. The rotation in two and three dimensions are special
case of the plane rotation (Meyer 2000). In the library we only
rotate in the three first dimensions, that does not affect the others,
as shows Figure 4.

h

x'Px = P
x x'

112

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

Figure 4. Definition of the plane rotation matrix in an n-dimensional space,

in the (i, j)-plane. The entries c and s are cosine and sine,
respectively. The rotation of a vector x is performed by matrix
multiplication (x'=P•x). Notice that if i and j are lower than four; the
elements of the vector x corresponding to dimensions greater than
three are not affected by the rotation (taken from Meyer (2000)).

Actually rotations are performed for a vector vect centered at 0,0 a
angle alfa (in radians) anticlockwise, with the functions:

 Array1D<double> rota_3D(Array1D<double> &vect, Array1D<double> &alf)
 Array1D<double> rota_2D(Array1D<double> &vect, Array1D<double> &alf)

The rotation matrix for 2D, along a normal axis to the 2D plane is:

The rotations in three dimensions are applied first trough Z axis,
second trough Y, and finally trough X. The matrices for each rotation
axis are defined as shows Figure 5.

Avoiding limitations in the number of variables
To build kriging systems with an arbitrary number of variables
the methodology explained in the first part of this paper was
used (Martinez-Vargas 2006). We write a multivariate RF as with
drift . To implement the methodology we pass to the function
void k_system(...), which is responsible to build the kriging system,
the locations of all data points as a TNT Array2D with a row per point
and a column per dimension. We also pass the values as a TNT
Array2D, with a row per point and a column per variable. The notation

 is achieved with a mapping function defined as a TNT Array2D
named index, with a row per each tuple , one column for the index
of the row , where is stored the point with vector coordinate , and
a column with identifiers of variables (Figure 6).

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
θθ
θθ

=
 cos sin

sin cos
P

()ix,Z
()ji,x,m

x
()xZi

()ix,Z
()ix,

k kx
i

113

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

Figure 5. Definition of the rotation matrices trough the axis x, y and

z (taken from Meyer (2000))

Figure 6. Schematic construction of the mapping function index from a

multivariate data in a multidimensional space with location
vectors .

What about the drift?
The drift , is defined trough a set of monomials

 with two possible types: geographic monomials, and external
drift monomials, where is the vector that define the variable
assigned to a monomial . The geographic drift monomials are defined
in term of coordinates as:

kx

() ()lll ji,x,ma=i,x,m ∑j n
()ll ji,x,m

j lj
lm

x

() ()∏ tp
tlll xji,=ji,x,f 1

114

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

for each dimension , and a power . The external drift is defined as:

where the external deterministic function is defined in any
point and is stored in a TNT Array2D, with a row per each point
and a column per each external drift variable. We can define without
limit an arbitrary number of external and geographical drifts.

A monomial for a variable can share or not coefficients with monomials
of another variables . When monomials share coefficients they are
dependent and the indicator function is . If a monomial is
independent then , and .

Monomials definitions are stored in a C++ structure named
monomial, with an identifier of the type of drift, an identifier for the
variable associated, and an identifier of independence status. For
geographical monomials there is an array with dimensions identifiers
and another one with the power . For external drift it is defined an
identifier of the variable of the external drift. The drift is stored as
a TNT Array1D of monomials.

The definition of the kriging system of equations
The system of kriging equations is composed by the kriging matrix,
the m solution vectors and the left m side vectors. Those vectors are
stored in a matrix with m columns; each column is associated to a
variable, assuming that we want to retrieve the full solution set for
each one of the m variables in the system.

The kriging system incorporate a set of values of spatial variability,
and a set of values of monomials that compose the drift. To define
the spatial variability we want to calculate we pass to the function
k_system(...) an identifier specifying if the system is retrieved in term
of variograms, covariances or generalized covariances, but this last
one is not implemented yet. Additionally we pass a spatial variability
model as an array of structures (named var_model) and other
necessary variables (Appendix A). To define the drift we pass the drift
definition in an array of monomials, and also a TNT arrays with
external drift values in the data and target locations.

The kriging matrices and vectors are constructed in two separate steep,
first the spatial variability part, second the drift. The results are retrieved
by reference as matrices with numerical values of spatial variability and
drift, the type of functions used, the variables and , and the
locations indexes and (or the monomial index instead for

t p

() () ()llll jx,eji,=ji,x,e 1

()ljx,e
x x

i
lj

() ji,=ji, l ∀ 11
() ll j=i=ji, ∀ 11 () ll ji=ji, ≠∀ 01

lj
t

tp
lj

i j
α β l β

115

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

the elements that belong to the drift part). This detailed information
is necessary if the user want to modify the kriging system of equation
in the script.

The implementation of the kriging algorithm is as follow:

1. To create empty kriging matrices, with size n=(index.dim1()+
drift.dim1()); where index.dim1() is the number of
tuples in the mapping function index. This mapping
function can be filled with the search neighborhood function.

2. To create the empty kriging vectors with size (n x nvar),
where nvar is the number of variables in the system. Notice
that additionally we pass a TNT Array1D named nv with the
number of points per variable. If some of the variables has
zero points then we rise an error because the cokriging
system can get unstable in some kriging models; this
checking is optional, but is activated by default, it can be
deactivated from Python, passing extra arguments. The array
nv can be automatically filled by the search neighborhood
function existing in the library.

3. To fill the spatial variability part of the kriging matrix with a
double for:

 for (i=0; i<index.dim1(); ++i)
 {
 li=index[i][0];
 vi=index[i][1];
 for (ii=i; ii<index.dim1(); ++ii)
 {
 lii=index[ii][0];
 vii=index[ii][1];
 K_matrix[i][ii]=calc_kovar(...);
 K_matrix[ii][i]=K_matrix[i][ii];
 ...
 }
 }

where li and lii are the coordinates indexes at points and

, vi and vii are the variable identifiers and of
and ; calc_kovar(...) is a function that returns the bi-
variate spatial variability between locations and .

4. To fill the drift part of the kriging matrix with the double for:

 for (i=n-drift.dim1(); i<n; ++i)
 for(ii=0; ii<n-drift.dim1(); ++ii)
 {

()ix,

αx
βx i j ()i,xZ α()j,xZ β

()i,xα ()j,xβ

116

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

 K_matrix[i][ii]=drift_calculator(...);
 K_matrix[ii][i]=K_matrix[i][ii];
 ...
 }

where drift_calculator(...) is a function to calculate the drift
for each point , n is the matrix size. The function
drift_calculator(...) takes as parameters the drift definition,
the index of the monomial , the coordinates of data
points, the index of the points , the values of the
external drift , the index for the external drift variable
to be used, and two variable index and , obtained from
the point and this one from the monomial .

5. To fill the spatial variability part of vectors with the double for:

 for(vii=0; vii<mv_data.dim2(); ++vii)
 for (i=0; i<index.dim1(); ++i)
 {
 li=index[i][0];
 vi=index[i][1];
 K_vector[i][vii]= calc_kovar_vect(...);
 ...
 }

where the function calc_kovar_vect(...) is similar to
calc_kovar(...) but takes also in to account if the target is in
block support and returns the mean spatial variability
between a data point and the discretization points of blocks.

6. To fill the drift part of the vectors with the double for:

 for (i=n-drift.dim1(); i<n; ++i)
 for(ii=0; ii<nvar; ++ii)
 {
 K_vector[i][ii]=drift_calculator(...);
 ...
 }

Others functions are defined in the library to solve various problems. For
example, the functions string do_K_system_equation_formula(...) and
string do_K_system_equation_result(...) return the kriging system as a
string with OpenOffice Math format. Others functions located in the
source file utils.cc perform diverse utilities, as rotate a vector, test if a
variogram is semi-definite positive, etc.. The description of the functions
and other symbols are given in the library source code (Appendix A).

()i,xα

l lm ()x
α ()i,xα

()t,xe α t
i lj

()i,xα ()lαl ji,,xm

117

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

RESULTS
The full C++ source and also the compiled shared library for Windows
an Linux can be downloaded from the library website (Appendix A).
Additionally the Python interface for functions and data definition is
provided, as well the Python code for two examples designed to
shows the functionality of the library. The first example was designed
to show how a complicated model, defined as a mix of common
kriging models, can be implemented in the library. The second
example was designed to show how an uncommon models can be
handled by the library.

Example one: a complicated kriging system
Given a random function with drift defined
by three local independent monomials with
and , and also two dependent external drifts and ,
we want to estimate and in a target location with
ordinary cokriging with extended collocation of , assuming that

 is known at any point of a domain D. Figure 1 shows the spatial
arrangement of the data and target.

Figure 6. Spatial arrangement of data () and target () for the

example 1. The distance . The empty spaces below location
points correspond to missing data.

We passed to the function that construct the kriging system an uni-
dimensional array with data locations with
data defined as:

where NaN values are “Not a Number” and are regarded as undefined
data by the library.

() 0,1,2=i;ix,Z ()ji,x,m
() 0xji,=m ll 1 0,1,2=l

0,1,2=ji, l ()xe3 ()xe4

()0v,Z ()2v,Z 1x=v
()1x,Z

()1x,Z

21,0, xxx
1x=v

1d =

[]20,1,x 210 =x=x=x= −

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

10030
20
101

NaN
NaNNaN
NaN

Z

118

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

The mapping function “Index” was defined as:

where and are the indexes that identify the row and the
column of the matrices and respectively.

Similarly the external drift is passed as an array, with drift values
defined for all points .

The variogram model was defined as an isotropic spherical with range

where

the model is semi(definite) positive since the eigenvalues of the
matrix are:

()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

22

12

11

10

00

__ =idiid,xIndex

idx_ idi_
x Z

x

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

10030

21020

15010
=e

1=d=a

()
⎪
⎩

⎪
⎨

⎧

≥

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

ah

a<h
a
h

a
h

=ji,h,γsph

 if 1

 if
2
1

2
3 3

ji,B

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

31,20,8

1,22,00,7

0,80,71,0

=ji,B

ji,B

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

4,15

1,23

0,62

=eig

119

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

The resulting kriging matrices were automatically generated by the
library in OpenOffice Math format as:

where is the variogram between the points and ;

 is the geographical monomial , of the drift ; is the
external drift monomial at point . The external drifts were
written without coefficients to highlight that are dependent
monomials. The target location is represented by ; are the
weights associated to and the Lagrange multiplier
associated to the monomial .

The resulting matrix also were passed as arrays of doubles. Solving
the system from the Python, with the module numpy, was obtained:

0,0
0,0

0,0
0,1

0,1
0,1

0,2
0,1

0,2
0,2 f 0,0

0,0 f 0,1
0,1 f 0,2

0,2 e0,3 e0,4

0,0
1,0

0,0
1,1

0,1
1,1

0,2
1,1

0,2
1,2 f 0,0

1,0 f 0,1
1,1 f 0,2

1,2 e0,3 e0,4

1,0
1,0

1,0
1,1

1,1
1,1

1,2
1,1

1,2
1,2 f 1,0

1,0 f 1,1
1,1 f 1,2

1,2 e1,3 e1,4

2,0
1,0

2,0
1,1

2,1
1,1

2,2
1,1

2,2
1,2 f 2,0

1,0 f 2,1
1,1 f 2,2

1,2 e2,3 e2,4

2,0
2,0

2,0
2,1

2,1
2,1

2,2
2,1

2,2
2,2 f 2,0

2,0 f 2,1
2,1 f 2,2

2,2 e2,3 e2,4

f 0,0
0,0 f 0,0

1,0 f 1,0
1,0 f 2,0

1,0 f 2,0
2,0 0 0 0 0 0

f 0,1
0,1 f 0,1

1,1 f 1,1
1,1 f 2,1

1,1 f 2,1
2,1 0 0 0 0 0

f 0,2
0,2 f 0,2

1,2 f 1,2
1,2 f 2,2

1,2 f 2,2
2,2 0 0 0 0 0

e0,3 e0,3 e1,3 e2,3 e2,3 0 0 0 0 0
e0,4 e0,4 e1,4 e2,4 e2,4 0 0 0 0 0

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 0

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 1

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 2

v ,0
0,0

v ,0
0,1

v ,1
0,1

v ,2
0,1

v ,2
0,2

f v , 0
0,0

f v , 1
0,1

f v , 2
0,2

ev , 3

ev , 4 B0

v , 0
1,0

v , 0
1,1

v , 1
1,1

v , 2
1,1

v , 2
1,2

f v ,0
1,0

f v ,1
1,1

f v ,2
1,2

ev ,3

ev , 4 B1

v ,0
2,0

v ,0
2,1

v ,1
2,1

v ,2
2,1

v ,2
2,2

f v ,0
2,0

f v ,1
2,1

f v , 2
2,2

ev ,3

ev , 4 B2

0.0 0.0 0.7 0.7 0.8 1.0 0.0 0.0 10.0 150.0
0.0 0.0 2.0 2.0 1.2 0.0 1.0 0.0 10.0 150.0
0.7 2.0 0.0 2.0 1.2 0.0 1.0 0.0 20.0 210.0
0.7 2.0 2.0 0.0 0.0 0.0 1.0 0.0 30.0 100.0
0.8 1.2 1.2 0.0 0.0 0.0 0.0 1.0 30.0 100.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
10.0 10.0 20.0 30.0 30.0 0.0 0.0 0.0 0.0 0.0
150.0 150.0 210.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 0

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 1

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 2

1.0
0.7
0.0
0.7
0.8
1.0
0.0
0.0

20.0
200.0 B0

0.7
2.0
0.0
2.0
1.2
0.0
1.0
0.0

20.0
200.0 B1

0.8
1.2
0.0
1.2
3.0
0.0
0.0
1.0

20.0
200.0 B2

ji,
βα,γ ()i,xZ α ()j,xZ β

ij,
lα,f l ()ji,,xm α lα,e

l αx lα,e
ji,

v i
αλ

()i,xZ α lµ
l

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 1

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 2

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 3

1.00
0.94

0.88
0.06
0.00
3.60
5.12
5.17

0.11
0.02

0.00
0.06
0.88
0.06
0.00
0.77
0.84
0.80
0.01

0.00

0.00
0.06
0.88
0.94

1.00
1.30
1.23

1.33
0.02

0.01

120

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

Notice that also the result for is given, and because:

 .

If the external drifts monomials are removed the solution of the
system is as follow:

Notice that the kriging matrix can be singular if the values of the
external drift monomials are collinear for example if:

If the values are not collinear but almost, then we can have serious
stability problems.

It is important to highlight that the library can construct many
different kriging systems, but if the model that underline this kriging
system is correct or not is not tested by the library. The general
shape of the kriging system must be deduced analytically for new
models, in order to prove that it is correct and to underline the
exception of validity.

Example two: cokriging grades measured in two different
exploration campaigns
This example was designed to show that the library can handle non-
conventional model of kriging. The problem was stated as:

In a mineral deposit grades are measured in two
different exploration campaigns: campaign and
campaign . The samples in the campaign were

()11,x=vZ 11
1 ≠λ

()

ik,
lv,

ij,
lα,

iα,

i
α f=fλ∑

0
0

0
1

1
1

2
1

2
2

0

1

2 V 1

0
0

0
1

1
1

2
1

2
2

0

1

2 V 2

0
0

0
1

1
1

2
1

2
2

0

1

2 V 3

1.00
0.35

0.35
0.00
0.00
0.76
0.00
0.00

0.00
0.00
1.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.60
0.60

1.00
0.00
0.00
2.28

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

30030

20020

10010
=e

z
0

1 0

121

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

measured with high precision, let say with measurement
error equal to zero. The samples in campaign were
measured with a quick field method, with an unknown but
non systematic measurement error.

A suitable model in this case is to consider two random functions
 and for grades in the campaigns and . It is evident

that the mean for both random functions is the same, then if we
do ordinary cokriging the drift coefficient for both RF are shared, that
means that we have a drift with a unique dependent monomial

. A solution to this problem was given by Chilès &
Delfiner (1999, p. 313), but is not a common method, then, at the
moment is not implemented in any software we know.

In this problem the data is not coincident, let say that samples from
different campaign are not in the same location. That means that we
are dealing with pure heterotopy. If we suppose we know that

, where is a nugget model associate to the
error with sill equal to two, and is an spherical with sill
equal to one and range . If we also assume none spatial correlation
between the error in and then the variogram is:

with matrices

with eigenvalues and respectively.

Figure 7. Spatial arrangement of data points at () and target ()

for the example 2. The distance d=1. The empty spaces below
location points correspond to missing data.

1

()0x,Z ()1x,Z z 0 1
()xmz

() 000 1 ji,=ji,x,m ∀

() () ()00011
eγ+hγ=hγ ()0eγ

()hγ00 ()hγsph

1=d
()1x,Z ()0x,Z

() () ()hγ+hγ=ji,h,γ esph
1

ji,
0

ji, BB

⎥
⎦

⎤
⎢
⎣

⎡

11

11
=0

ji,B ⎥
⎦

⎤
⎢
⎣

⎡

20

00
=1

ji,B

() []02=eig 0
ji,B () []20=eig 1

ji,B

20, xx
1x=v

122

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

Given the spatial distribution of the data, as shows Figure 7, the
resulting kriging system is:

Notice that now the index is associated to the point , because
we pass locations as an array with two elements and
we count array elements from zero.

The solution for this system is as follow:

Notice that the weight attached for both data points in the estimation
of the variable without error () is the same. Surprisingly the
solution vector for give a reduced power to and a large
power to , filtering in some way the error.

CONCLUSIONS
The proposed algorithm, based on RFs defined as , with drift

, can handle a large number of kriging models, included new,
uncommon and complex models. That is possible because the source
code that build the kriging system of equations was not predefined for
a set of specific kriging models. Are the users whom define the
kriging model, passing the appropriated set of data and parameters to
the function responsible to build the kriging system. It is also possible
because users have access to the kriging system of equations, which
can be modified before be solved.

1
0

1,1

1

1,0

0

0
0

0,1

1

0,0

0

1
0

1
1

0
0

0
0

1
1

0
0

1,00,0

1,0
1,1
1,1

1,0
1,0

0,0
0,1
0,1

0,0
0,0

0
Bv,

v,

v,

Bv,

v,

v,

VV f

γ

γ

f

γ

γ

µ

λ

λ

µ

λ

λ

ff

fγγ

fγγ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

10
1

0

1
1

0
0

0
0

1
1

0
0

1.0

3.0

1.0

1.0

1.0

1.0

0.01.01.0

1.00.01.0

1.01.00.0

BB
VV

=

µ

λ

λ

µ

λ

λ

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

1=α 2x
[]21, 20 =x=x −

101
0

1
1

0
0

0
0

1
1

0
0

1,5

0,5-

1,5

0,5

0,5

0,5

BBVV

=

µ

λ

λ

µ

λ

λ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

()0v,Z
()1v,Z ()11,xZ

()00,xZ

()ix,Z
()ji,x,m

123

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

APPENDIX
The source code of the library can be downloaded from the
website http://OpenKriging.webs.com

Some links with modules recommended or necessary to work with the
library are:

Numpy http://numpy.scipy.org/
Matplotlib http://matplotlib.sourceforge.net/
Visual Python http://vpython.org/

REFERENCES
CHILÈS JEAN-PAUL, DELFINER PIERRE. 1999: Geostatistics: Modeling

Spatial Uncertainty. Jonh Wiley & Sons Inc., New York, 695 p.
BLEINÈS CATHERINE, DERAISME JACQUES, FRANÇOIS GEFFROY, JEANNÉE

NICOLAS, PERSEVAL SÉBASTIEN, RAMBERT FRÉDÉRIC, RENARD DIDIER,
TORRES OLIVER, TOUFFAIT YVES 2007: Isatis Technical References,
version 7.0. GEOVARIANCES, 2007. 138 p.

BROKKEN FRANK B., 2008: C++ Annotations Version 7.2.0.
University of Groningen, Netherlands. ISBN 90 367 0470 7.
http://www.icce.rug.nl/documents/

CHRISTENSEN O.F., RIBEIRO-JR. P.J. 2002: geoRglm: A package for
generalised linear spatial models. R-News 2(2): 26-28.

DEUTSCH, CLAYTON V. AND ANDRÉ G. JOURNEL. 1998: “GSLIB:
Geoestatistical software library and User’s Guide”. Oxford
University Press, New York, 1998, 369 p.

DIGGLE PETER J., RIBEIRO-JR. PAULO J. 2007: Model-based Geostatistics.
Springer Science+Business Media, LLC, 2007. ISBN-10: 0-387-
32907-2. 228 p.

FREE SOFTWARE FOUNDATION. 2007: GNU General Public License,
Version 3, 29 June 2007. Copyright © 2007 Free Software
Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA
02110, USA. http://www.gnu.org/licenses/gpl.html

MEYER-CARL, D. 2000: Matrix analysis and applied linear algebra.
Society for industrial and applied mathematics, 3600 University City
Science Center. Philadelphia, PA 19104-2688 ISBN 0-8987|-454-0.
MONSALVE-TOBON JUAN ESTEBAN, 2005. JAMA/C++ Linear Algebra Package,

version 1.2. The MathWorks and the National Institute of Standards and
Technology (NIST).http://math.nist.gov/tnt/jama_doxygen/index.html,
http://math.nist.gov/tnt/jama125.zip

NUMPY COMMUNITY, 2009: NumPy User Guide Release 1.4.0.dev7335.
http://www.scipy.org/

OLIPHANT, TRAVIS E. 2006: Guide to NumPy. PhD. 378 pages.

124

Minería y Geología / v.26 n.4 / 2010 ISSN 1993 8012

PEBESMA, EDZER J. 2004: Multivariable geostatistics in S: the gstat
package. Computers & Geosciences. Vol 30, ISSN: 0098-3004,
p. 683-691.

POZO, ROLDAN. 2004: The Template Numerical Toolkit (TNT). Mathematical
and Computational Sciences Division, National Institute of Technology,
Gaithersburg, MD USA. http://math.nist.gov/tnt/index.html,
http://math.nist.gov/tnt/tnt_3_0_12.zip

REMY, NICOLAS. 2001: GsTl: The geostatistical template library in C++.
Department of petroleum engineering, Stanford University. [Master
of science these]142 pages.

REMY, NICOLAS; BOUCHER, ALEXANDRE & WU, JIANBING. 2006: SGeMS
User’s Guide. 128 pages.

RIBEIRO-JR., P.J.; DIGGLE, P.J. 2001: geoR: A package for geostatistical
analysis. R-News 1(2): 15-18.

TRAUTH, MARTIN H. 2006: MATLAB® Recipes for Earth Sciences.
Springer-Verlag Berlin Heidelberg New York, 237 p.

Adrian Martínez Vargas

 Doctor en Ciencias Geológicas.
Profesor Asistente. Departamento de Geología.

Instituto Superior Minero Metalúrgico de Moa, Cuba.

adriangeologo@yahoo.es

125

