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Abstract 
Most of geostatistical software have a limited number of kriging 
models and are not flexible enough to allow to define new or 
complicated models. With the aim to obtain a flexible algorithm for 
kriging was used a notation of multivariate regionalized random 
function (RF) as a univariate RF Z(x, i), with a drift m(x, i, j), were i and j 
indicate variable identifiers. A geostatistical library named 
OpenKriging was programed in C++. This library has a function 
callable from scripts written in Python, able to construct the kriging 
system of equations of the above mentioned RF, with no restriction in 
the number of spatial dimensions, variables and monomials in the 
drift. Two types of drift monomials where implemented, geographical 
and external drift. The drift monomials can be independent or 
dependent. The function responsible to build the kriging system of 
equations was not programed for a predefined model, the model is 
defined by the user, passing from Python the appropriate data and 
parameters and modifying from Python the system prior to solve it. 
The resulting library can handle the most commons models, and also 
new or uncommon models. The library is easy to modify to increase 
the functionality. The functionality was shown trough two examples of 
kriging models: one with a complicated definition, the other can be 
considered as uncommon.  
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Cómo reescribir funciones aleatorias 
multivariadas como univariadas para 

hacer cokrigeage. Un algoritmo flexible 

Resumen 
La mayoría de los software para geoestadísticas poseen un limitado 
número de modelos de krigeage y no son lo suficientemente flexibles 
para definir nuevos o complicados modelos. Con el objetivo de 
obtener un algoritmo flexible de krigeage se empleó la notación de 
funciones aleatorias regionalizadas (RF) multivariadas escritas como 
una RF univariada Z(x, i), con un drift m(x, i, j), donde i y j son 
identificadores de variables. Se programó en C++ una librería 
geoestadística llamada OpenKriging, con una función que se puede 
llamar desde código escrito en Python, la cual es capaz de construir el 
sistema de krigeage de la RF mencionada, sin restricciones en el 
número de dimensiones espaciales, variables y monomios en el drift. 
Se implementaron dos tipos de drift: los geográficos y los drift 
externos, estos pueden ser independientes o no. La función 
responsable de construir el sistema de ecuaciones krigeage no se 
programó para un modelo predefinido, el modelo es definido por el 
usuario pasando desde el código en Python los datos y argumentos 
apropiados y modificando el sistema antes de resolverlo. La librería 
resultante puede asimilar muchos de los modelos conocidos de 
krigeage y también modelos nuevos o poco comunes; esta es fácil de 
modificar para incrementar su funcionalidad, la cual se mostró a 
través de dos ejemplos de modelos de krigeage: uno con definición 
complicada y el otro poco común.  

Palabras clave 
C++, funciones aleatorias multivariadas, GPL, krigeage, n-dimensional, 
OpenKriging, Python, software para geoestadística. 
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INTRODUCTION  
Earliest implementations of kriging in geostatistical libraries were 
limited to a set of bi-variate regionalized random functions (RF) , 
up to three spatial dimensions in coordinates vector  and a reduced 
set of kriging models. In the legendary Geostatistical Library (GSLIB) 
by Deutsch, Clayton and Journel (1998) kriging options were 
implemented in the packages: 2D Kriging (kb2d), 3-D Kriging 
Program (kt3d), 3-D Cokriging Program (cokb3d) and the Indicator 
Kriging Program (ik3d). The prefix 3d and 2d indicate that those 
packages are designed for two and three dimensions only. In GSLIB 
cokriging was implemented for only two variables. 
 
This tendency remains in some modern geostatistical packages, for 
example, in the popular GsTL: the Geostatistics Template Library, 
presented and explained by Remy (2001, p. 26) the cokriging method 
is implemented for only two variables, and only up to three 
dimensions are allowed. In the software SGeMS, the graphical front 
end of GsTL (Remy et al. 2006) the set of kriging models 
implemented is limited to: the univariate versions of simple kriging, 
ordinary kriging and kriging with trend, this last one limiting the drift 
definition to a total of nine possible monomials (X, X2, Y, Y2, Z, Z2, 
XY, XZ, YZ). In the bi-variate kriging models the options are: simple 
cokriging, ordinary cokriging and two variants of Markov model. Remy 
et. al. (2006) also gave an implementation of indicator kriging.  
 
The commercial software ISATIS has the largest number of 
geostatistical techniques implemented. This software includes a wide 
set of external drifts, also covers from the classical implementation of 
simple kriging to disjunctive kriging, some special models, for 
example: kriging several variables linked through partial derivatives 
and kriging with measurement error (Bleines  et al. 2007). Despite 
the potential of this software the number of dimensions of the 
coordinate space is limited up to three, and the implementation of 
new models is limited or impossible because is not open source. 
 
A different approach was introduced by a new generation of 
libraries that run over scripting programming languages as Matlab, 
Octave, or R. Gebbers R. (Trauth 2006, p. 177) introduced the use of 
geostatistics in Matlab throw a pure Matlab code, with a deep 
vectorized but intuitive approach. The code presented by Gebbers R. 
only covers the ordinary kriging, but can be modified to be extended to 
any model. Another example was shown by Diggle & Ribeiro-Jr (2007), 
they presented two packages for R: geoR and geoRglm (Ribeiro & 
Diggle 2001, Christensen & Ribeiro 2002), both for model based 
geostatistics, including likelihood-based and Bayesian methods, but 
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they are only implemented for problems defined in two dimensions, and 
up to two variables. Another R package for geostatistics is gstat, by 
Pebesma (2004). Multivariate geostatistics in this package can handle 
more than two variables distributed in a three-dimensional space.  
 
Script languages are slow. To increase the speed in computations the 
packages running over scripting languages are often programmed as 
shared libraries written in C, C++ or Fortran. The script works as an 
interface from where data is passed to functions inside a compiled 
library, as reference in memory or as pointers. Compiled libraries are 
in charge to do the heavy work: looping over large data, obtain 
numerical solutions, etc.   
 
Most of kriging algorithms implemented in open source geostatistical 
libraries are designed for a fixed number of variables, dimensions        
and kriging models. To modify those algorithms, with the aim to increase 
the number of dimensions, variables and kriging models, is not an 
efficient idea because usually large transformations of the original code 
are required. 
 
A list of some kriging models (Bleines  et al. 2007): can be ordinary 
kriging, simple kriging, kriging in the IRF-k case, kriging drift estimator, 
kriging with external drift, kriging for filtering model components, 
factorial kriging, block kriging, polygon kriging, kriging gradient 
estimator, kriging for several variables linked through partial derivatives, 
kriging with inequalities, kriging with measurement error, lognormal 
kriging, cokriging, extended collocated cokriging, indicator kriging, 
disjunctive kriging, uniform conditioning and service variables, and other 
models not mentioned here. Notice that most of those kriging models can 
be combined to obtain hybrid kriging models. To programming a suitable 
algorithm for all base models and hybrids can be difficult. 
 
Trough comparing kriging systems of equations for different models it can 
be notice that they do not exist too many differences between many of 
them. For example the kriging system of equations for drift estimation is 
the same to the universal kriging one but with all covariances in the right 
hand side of the equations equal to zero; to perform IRF-k kriging instead 
to use covariances or variograms we use generalized covariances; to 
perform disjunctive kriging we have to estimate by simple kriging the 
Hermite coefficients. The differences between the kriging systems can be 
summarized in two main types: 1) variation relate with the definition     
of the kriging system in term of: spatial variability functions, number     
of variables and drifts, 2) variation in the nature of the data we use       
as input. 
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In the first part of this paper the idea to rewrite a multivariate set of 
random functions (RF)  into a single univariate RF  with a 

system of equations is equivalent to the system obtained by the 
classical multivariate approach; in addition the method can handle 
most of the kriging models mentioned above and simplify the 
construction of the system of cokriging equations. 
 
The aim of this paper is to present flexible algorithms to kriging RFs 

, without limitations in the number of dimension, variables, 
drift size and types, able to handle the most commons models, and 
also easy to modify to implement new or uncommon models. 
 
METHODOLOGY 
A geostatistical library name OpenKriging was created. It is a shared 
library that has a function named k_system. This function is the 
responsible to construct the kriging system of equations for a 
single target , given a RF , with a drift  and a 
specific model of spatial variability (Stage A). This function can be 
called from a scripting code written in Python. The flexibility of this 
kriging algorithm lays in the freedom that has the user to define the 
kriging model to be used, passing to the function k_system the 
appropriate data and options. The main data that the user has to 
pass to the function are: data locations and variables , the drift 
definition  and the type of spatial variability. No restrictions 
were imposed in the number of variables  and dimensions in the 
location vectors , neither in the number of monomials and their 
types. In addition the user can modify the kriging system of 
equation from the Python script, before to solve it. 
 
The shared library was created to experiment existing and new 
models in a single testing target (Figure 1), but can be extended to 
apply kriging in many targets, looping in each target and finding 
neighborhood data with a neighborhood searching function available 
in the library. This approach can be implemented directly in the 
shared library (Figure 3) or from Python scripts (Figure 2), because 
the neighborhood searching function is also available for external 
applications. This one is the stage B of development of the library 
but it is not disused in this paper.  
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Figure 1. Schematic implementation in pseudo-code of the kriging 

algorithm for a single target. 

 

 
Figure 2. Schematic implementation in pseudo-code of the kriging 

algorithm for n targets, looping in Python. 

 
Others auxiliary functions in the library are callable from external 
applications, for example: functions to perform test of 
communication, transference of the data and to obtain the kriging 
matrix definition in OpenOffice Math format. It is also available a 
function to calculate the mean variogram and covariance in a block, 
which is necessary to calculate the standard deviation of kriging 
errors from Python. 
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Figure 3. Schematic implementation in pseudo-code of the kriging algorithm 

for n targets, looping inside the C++ library. 

 
To create the shared library five principles were followed: 

1. The source code is open, to allow any modification by the users 
2. A procedural programming approach is preferable, to make as 

clear as possible the code for non experimented programmers 
3. The communication with external applications is important, 

specially with scripting languages 
4. The speed is not the main objective, but is important 
5. The library is portable to common operating systems, for 

example Linux and Windows.  
 
To ensure a free access to source code the license GPL from GNU was 
adopted (Free Software Foundation 2007). In principle the idea of the 
shared library start by a flexible code that allows to do as many 
operation possible from the scripting language, but many 
modifications will be necessary to fix bugs, to add more functionality, 
or to implement new kriging models in the development Stage B.  
 
The library was programed in C++, but with C procedural 
philosophy (Brokken 2008). To solve main tasks and sub-tasks a 
conglomerate of functions was created, communicating each one to 
the others through arguments and variables. This approach is very 
intuitive for many non expert programmers. Was avoided the use 
of classes, instead were used structures. Was also avoided the 
definition of templates functions. With this approach only a 
minimum of knowledge about C++ is required to modify the library 
source code. To know about concepts related to object oriented 
programing and generic programming is not necessary. Confusing 
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concepts as pointers were avoided as mush as possible, instead were 
used reference variables defined in function's arguments as              
T & variable where T is the variable type (Brokken 2008). 
 
The matrices and vectors manipulations were implemented with TNT 
version 3.0.12 (Pozo-Roldan 2004). In addition the numerical library 
JAMA/C++ (Monsalve-Tobon Juan Esteban 2005) was used to solve 
numerical problems. Some abstract containers from the Standard 
Template Library (STL) (Brokken 2008) as vector and string were 
occasionally used as extra tools. TNT and JAMA/C++ were 
redistributed with the geostatistical library sources (Appendix A). The 
use of extra libraries was avoided, to make easy the portability to 
different operative systems. 
 
The shared library was compiled in with GNU G++ for the operative 
system Windows and Linux, and distributed as binary files. To call 
those files from Python 2.x in Windows and Linux they have to be 
copied inside system directories (Appendix A). 
 
The communication with external applications was performed through 
the prototype:  
 
    extern "C" 
    { 
        // C-declarations go in here 
    } 

This prototype allows to call the external functions in the library from 
scripting languages as Python or R, also from compiled softwares, for 
example in C++, C# or Visual Basic.  
 
To make an universal transference of data a set of external structures 
was declared in the file “ext_globals.cc”; those structures define the 
data and models that we transfer: 

1. The spatial variability model 
2. The search neighbor 
3. The data, including the external drift in the data 
4. The target, including the external drift in the target 

 
The arrays coming from external applications are passed to the library 
by reference, as classic C uni-dimensional arrays, defined with the 
pointer operator as T *variable. Most of those arrays are reconverted 
to TNT arrays as Array1D (int n, T *a) or Array2D (int m, int n, T *a), 
where m and n are the number of columns and rows in the arrays, 
T *a is an uni-dimensional array of type T with C order, often referred 
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T *a is an uni-dimensional array of type T with C order, often 
referred to as "row-major ordering" (Pozo-Roldan 2004). This 
method take the reference in memory of *variable saving running 
time and memory, also allowing appropriate transference of data 
between the library and external applications. 
 
The selected scripting language to communicate with the library was 
Python 2.x, the communication was performed trough the modules 
ctypes version 1.0.3, and numpy version 1.3.0. In the case of the 
module numpy  a version equal or higher to 1.1.0 is recommended, 
because allows to reading matrices from files (NumPy  
community 2009). Python was selected because is easy, intuitive, 
cross platform and there are a large number modules that make 
easy the data manipulation, graphical user interface (GUI) 
implementation and plotting. In some tests were used the Python 
modules: numpy for data manipulation and scientific calculation; 
Visual Python for 3D plotting and Matplotlib for 2D plotting.  
 
To create the kriging algorithm three main objective were set:  

1. they are not limitations in the number of dimensions, 
2. neither in the number of variables and drift monomials, 
3. the algorithm must be flexible enough to permit 

modifications.  
 
Avoiding limitation on the number of dimensions 
To avoid limitation on the number of dimensions non special 
algorithms are necessary to define the kriging matrix, but to 
calculate the spatial variability and to search neighboring points to a 
target with an (hyper)ellipsoid searching function. For example, to 
estimate the variogram value between two points the anisotropy per 
structure must be considered; if the anisotropy exist it is necessary 
to translate, rotate and then rescale the anisotropic distance vector 
to obtain an isotropic scalar distance .  
 
In systems with one dimension the rotation is not performed. For 
two or more dimensions the idea of plane rotation (also called 
Givens rotations) was implemented as , where  is the 
rotation matrix, , the original coordinates vector and  the 
rotated vector. The rotation in two and three dimensions are special 
case of the plane rotation (Meyer 2000). In the library we only 
rotate in the three first dimensions, that does not affect the others, 
as shows Figure 4. 
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Figure 4. Definition of the plane rotation matrix in an n-dimensional space,    

in the (i, j)-plane. The entries c and s are cosine and sine, 
respectively. The rotation of a vector x is performed by matrix 
multiplication (x'=P•x). Notice that if i and j are lower than four; the 
elements of the vector x corresponding to dimensions greater than 
three are not affected by the rotation (taken from Meyer (2000)). 

 
Actually rotations are performed for a vector vect centered at 0,0 a 
angle alfa (in radians) anticlockwise, with the functions: 
 
 Array1D<double> rota_3D(Array1D<double> &vect, Array1D<double> &alf) 
 Array1D<double> rota_2D(Array1D<double> &vect, Array1D<double> &alf) 
 
The rotation matrix for 2D, along a normal axis to the 2D plane is: 

  
 
The rotations in three dimensions are applied first trough Z axis, 
second trough Y, and finally trough X. The matrices for each rotation 
axis are defined as shows Figure 5. 
 
Avoiding limitations in the number of variables 
To build kriging systems with an arbitrary number of variables         
the methodology explained in the first part of this paper was          
used (Martinez-Vargas 2006). We write a multivariate RF as  with 
drift . To implement the methodology we pass to the function 
void k_system(...), which is responsible to build the kriging system, 
the locations of all data points  as a TNT Array2D with a row per point 
and a column per dimension. We also pass the values  as a TNT 
Array2D, with a row per point and a column per variable. The notation 

 is achieved with a mapping function defined as a TNT Array2D 
named index, with a row per each tuple , one column for the index 
of the row , where is stored the point with vector coordinate , and 
a column with identifiers of variables  (Figure 6). 
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Figure 5. Definition of the rotation matrices trough the axis x, y and              

z (taken from Meyer (2000)) 
 

 
Figure 6. Schematic construction of the mapping function index from a 

multivariate data in a multidimensional space with location   
vectors . 

 
What about the drift? 
The drift , is defined trough a set of  monomials 

 with two possible types: geographic monomials, and external 
drift monomials, where  is the vector that define the variable  
assigned to a monomial . The geographic drift monomials are defined 
in term of coordinates  as: 
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for each dimension , and a power . The external drift is defined as:  

  
where the external deterministic function  is defined in any 
point  and is stored in a TNT Array2D, with a row per each point  
and a column per each external drift variable. We can define without 
limit an arbitrary number of external and geographical drifts. 
 
A monomial for a variable  can share or not coefficients with monomials 
of another variables . When monomials share coefficients they are 
dependent and the indicator function is . If a monomial is 
independent then , and . 
 
Monomials definitions are stored in a C++ structure named 
monomial, with an identifier of the type of drift, an identifier for the 
variable  associated, and an identifier of independence status. For 
geographical monomials there is an array with dimensions identifiers  
and another one with the power .  For external drift it is defined an 
identifier  of the variable of the external drift. The drift is stored as 
a TNT Array1D of monomials. 
 
The definition of the kriging system of equations  
The system of kriging equations is composed by the kriging matrix, 
the m solution vectors and the left m side vectors. Those vectors are 
stored in a matrix with m columns; each column is associated to a 
variable, assuming that we want to retrieve the full solution set for 
each one of the m variables in the system.   
 
The kriging system incorporate a set of values of spatial variability, 
and a set of values of monomials that compose the drift. To define 
the spatial variability we want to calculate we pass to the function 
k_system(...) an identifier specifying if the system is retrieved in term 
of variograms, covariances or generalized covariances, but this last 
one is not implemented yet. Additionally we pass a spatial variability 
model as an array of structures (named var_model) and other 
necessary variables (Appendix A). To define the drift we pass the drift 
definition in an array of monomials, and also a TNT arrays with 
external drift values in the data and target locations.  
 
The kriging matrices and vectors are constructed in two separate steep, 
first the spatial variability part, second the drift. The results are retrieved 
by reference as matrices with numerical values of spatial variability and 
drift, the type of functions used, the variables  and , and the 
locations indexes  and  (or the monomial index  instead  for 
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the elements that belong to the drift part). This detailed information 
is necessary if the user want to modify the kriging system of equation 
in the script. 
 
The implementation of the kriging algorithm is as follow:  

1. To create empty kriging matrices, with size n=(index.dim1()+ 
drift.dim1()); where index.dim1() is the number of       
tuples  in the mapping function index. This mapping 
function can be filled with the search neighborhood function. 

2. To create the empty kriging vectors with size (n x nvar), 
where nvar is the number of variables in the system. Notice 
that additionally we pass a TNT Array1D named nv with the 
number of points per variable. If some of the variables has 
zero points then we rise an error because the cokriging 
system can get unstable in some kriging models; this 
checking is optional, but is activated by default, it can be 
deactivated from Python, passing extra arguments. The array 
nv can be automatically filled by the search neighborhood 
function existing in the library.  

3. To fill the spatial variability part of the kriging matrix with a 
double for:  

 
        for (i=0; i<index.dim1(); ++i) 
        { 
            li=index[i][0]; 
            vi=index[i][1]; 
            for (ii=i; ii<index.dim1(); ++ii) 
            { 
                lii=index[ii][0]; 
                vii=index[ii][1]; 
                K_matrix[i][ii]=calc_kovar(...); 
                K_matrix[ii][i]=K_matrix[i][ii]; 
        ... 
            } 
        } 

 
where li and lii are the coordinates indexes at points  and 

, vi and vii are the variable identifiers  and  of   
and ;  calc_kovar(...) is a function that returns  the bi-
variate spatial variability between locations  and . 

4. To fill the drift part of the kriging matrix with the double for: 
 

          for (i=n-drift.dim1(); i<n; ++i) 
                for(ii=0; ii<n-drift.dim1(); ++ii)  
                { 

( )ix,
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                        K_matrix[i][ii]=drift_calculator(...); 
                        K_matrix[ii][i]=K_matrix[i][ii]; 
       ... 
                } 
 

where drift_calculator(...) is a function to calculate the drift 
for each point , n is the matrix size. The function 
drift_calculator(...) takes as parameters the drift definition,  
the index  of the monomial , the coordinates  of data 
points, the index  of the points , the values of the 
external drift , the index  for the external drift variable 
to be used, and two variable index  and , obtained from 
the point  and this one from the monomial . 

5. To fill the spatial variability part of vectors with the double for: 
 

        for(vii=0; vii<mv_data.dim2(); ++vii) 
            for (i=0; i<index.dim1(); ++i) 
            { 
                li=index[i][0]; 
                vi=index[i][1]; 
                K_vector[i][vii]= calc_kovar_vect(...); 
          ... 
            } 

         
where the function calc_kovar_vect(...) is similar to 
calc_kovar(...) but takes also in to account if the target is in 
block support and returns the mean spatial variability 
between a data point and the discretization points of blocks.  

6. To fill the drift part of the vectors with the double for: 
 

        for (i=n-drift.dim1(); i<n; ++i) 
                for(ii=0; ii<nvar; ++ii)  
                { 
                        K_vector[i][ii]=drift_calculator(...); 
         ... 
                } 

 
Others functions are defined in the library to solve various problems. For 
example, the functions string do_K_system_equation_formula(...) and 
string do_K_system_equation_result(...) return the kriging system as a 
string with OpenOffice Math format. Others functions located in the 
source file utils.cc perform diverse utilities, as rotate a vector, test if a 
variogram is semi-definite positive, etc.. The description of the functions 
and other symbols are given in the library source code (Appendix A). 
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RESULTS 
The full C++ source and also the compiled shared library for Windows 
an Linux can be downloaded from the library website (Appendix A). 
Additionally the Python interface for functions and data definition is 
provided, as well  the Python code for two examples designed to 
shows the functionality of the library. The first example was designed 
to show how a complicated model, defined as a mix of common 
kriging models, can be implemented in the library. The second 
example was designed to show how an uncommon models can be 
handled by the library. 
 
Example one: a complicated kriging system 
Given a random function  with drift  defined 
by three local independent monomials  with  
and , and also two dependent external drifts  and , 
we want to estimate  and  in a target location  with 
ordinary cokriging with extended collocation of , assuming that 

 is known at any point of a domain D. Figure 1 shows the spatial 
arrangement of the data and target.  
 

 
Figure  6. Spatial arrangement of data ( ) and target ( ) for the 

example 1. The distance  . The empty spaces below location 
points correspond to missing data.  

 
We passed to the function that construct the kriging system an uni-
dimensional array with data locations   with 
data defined as: 

  
 

where NaN values are “Not a Number” and are regarded as undefined 
data by the library.  
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The mapping function “Index” was defined as: 
 

  
 
where  and  are the indexes that identify the row and the 
column of the matrices  and  respectively.  
 
Similarly the external drift is passed as an array, with drift values 
defined for all points . 
 

  
 
The variogram model was defined as an isotropic spherical with range 

  
 

  
 
where  
 

  
 
the model is semi(definite) positive since the eigenvalues of the 
matrix  are:  
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The resulting kriging matrices were automatically generated by the 
library in OpenOffice Math format as: 

 
 

 
 
where  is the variogram between the points  and ; 

 is the geographical monomial , of the drift  ;  is the 
external drift monomial  at point . The external drifts   were 
written without coefficients  to highlight that are dependent 
monomials. The target location is represented by ;  are the 
weights associated to  and  the Lagrange multiplier 
associated to the monomial . 
 
The resulting matrix also were passed as arrays of doubles. Solving 
the system from the Python, with the module numpy, was obtained: 

  

0,0
0,0

0,0
0,1

0,1
0,1

0,2
0,1

0,2
0,2 f 0,0

0,0 f 0,1
0,1 f 0,2

0,2 e0,3 e0,4

0,0
1,0

0,0
1,1

0,1
1,1

0,2
1,1

0,2
1,2 f 0,0

1,0 f 0,1
1,1 f 0,2

1,2 e0,3 e0,4

1,0
1,0

1,0
1,1

1,1
1,1

1,2
1,1

1,2
1,2 f 1,0

1,0 f 1,1
1,1 f 1,2

1,2 e1,3 e1,4

2,0
1,0

2,0
1,1

2,1
1,1

2,2
1,1

2,2
1,2 f 2,0

1,0 f 2,1
1,1 f 2,2

1,2 e2,3 e2,4

2,0
2,0

2,0
2,1

2,1
2,1

2,2
2,1

2,2
2,2 f 2,0

2,0 f 2,1
2,1 f 2,2

2,2 e2,3 e2,4

f 0,0
0,0 f 0,0

1,0 f 1,0
1,0 f 2,0

1,0 f 2,0
2,0 0 0 0 0 0

f 0,1
0,1 f 0,1

1,1 f 1,1
1,1 f 2,1

1,1 f 2,1
2,1 0 0 0 0 0

f 0,2
0,2 f 0,2

1,2 f 1,2
1,2 f 2,2

1,2 f 2,2
2,2 0 0 0 0 0

e0,3 e0,3 e1,3 e2,3 e2,3 0 0 0 0 0
e0,4 e0,4 e1,4 e2,4 e2,4 0 0 0 0 0

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 0

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 1

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 2

v ,0
0,0

v ,0
0,1

v ,1
0,1

v ,2
0,1

v ,2
0,2

f v , 0
0,0

f v , 1
0,1

f v , 2
0,2

ev , 3

ev , 4 B0

v , 0
1,0

v , 0
1,1

v , 1
1,1

v , 2
1,1

v , 2
1,2

f v ,0
1,0

f v ,1
1,1

f v ,2
1,2

ev ,3

ev , 4 B1

v ,0
2,0

v ,0
2,1

v ,1
2,1

v ,2
2,1

v ,2
2,2

f v ,0
2,0

f v ,1
2,1

f v , 2
2,2

ev ,3

ev , 4 B2

0.0 0.0 0.7 0.7 0.8 1.0 0.0 0.0 10.0 150.0
0.0 0.0 2.0 2.0 1.2 0.0 1.0 0.0 10.0 150.0
0.7 2.0 0.0 2.0 1.2 0.0 1.0 0.0 20.0 210.0
0.7 2.0 2.0 0.0 0.0 0.0 1.0 0.0 30.0 100.0
0.8 1.2 1.2 0.0 0.0 0.0 0.0 1.0 30.0 100.0
1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
10.0 10.0 20.0 30.0 30.0 0.0 0.0 0.0 0.0 0.0
150.0 150.0 210.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 0

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 1

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 2

1.0
0.7
0.0
0.7
0.8
1.0
0.0
0.0

20.0
200.0 B0

0.7
2.0
0.0
2.0
1.2
0.0
1.0
0.0

20.0
200.0 B1

0.8
1.2
0.0
1.2
3.0
0.0
0.0
1.0

20.0
200.0 B2

ji,
βα,γ ( )i,xZ α ( )j,xZ β

ij,
lα,f l ( )ji,,xm α lα,e

l αx lα,e
ji,

v i
αλ

( )i,xZ α lµ
l

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 1

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 2

0
0

0
1

1
1

2
1

2
2

0

1

2

3

4 V 3

1.00
0.94

0.88
0.06
0.00
3.60
5.12
5.17

0.11
0.02

0.00
0.06
0.88
0.06
0.00
0.77
0.84
0.80
0.01

0.00

0.00
0.06
0.88
0.94

1.00
1.30
1.23

1.33
0.02

0.01

120 



 

Minería y Geología / v.26 n.4 / 2010  ISSN 1993 8012 

Notice that also the result for  is given, and  because: 
 

 . 
 
If the external drifts monomials are removed the solution of the 
system is as follow:  
 

  
  
Notice that the kriging matrix can be singular if the values of the 
external drift monomials are collinear for example if: 
 

  
 
If the values are not collinear but almost, then we can have serious 
stability problems. 
 
It is important to highlight that the library can construct many 
different kriging systems, but if the model that underline this kriging 
system is correct or not is not tested by the library. The general 
shape of the kriging system must be deduced analytically for new 
models, in order to prove that it is correct and to underline the 
exception of validity. 
 
Example two: cokriging grades measured in two different 
exploration campaigns 
This example was designed to show that the library can handle non-
conventional model of kriging. The problem was stated as:  
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measured with high precision, let say with measurement 
error equal to zero. The samples in campaign  were 
measured with a quick field method, with an unknown but 
non systematic measurement error.  
 

A suitable model in this case is to consider two random functions 
 and  for grades  in the campaigns  and .  It is evident 

that the mean  for both random functions is the same, then if we 
do ordinary cokriging the drift coefficient for both RF are shared, that 
means that we have a drift with a unique dependent monomial 

. A solution to this problem was given by Chilès & 
Delfiner (1999, p. 313), but is not a common method, then, at the 
moment is not implemented in any software we know. 
 
In this problem the data is not coincident, let say that samples from 
different campaign are not in the same location. That means that we 
are dealing with pure heterotopy. If we suppose we know that 

, where  is a nugget model associate to the 
error with sill equal to two, and  is an spherical  with sill 
equal to one and range . If we also assume none spatial correlation 
between the error in  and  then the variogram is:  
 

  
 
with matrices  
 

    
 
with eigenvalues  and  respectively. 
 
 

 
Figure 7. Spatial arrangement of data points at ( ) and target ( ) 

for the example 2. The distance d=1. The empty spaces below 
location points correspond to missing data.  
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Given the spatial distribution of the data, as shows Figure 7, the 
resulting kriging system is: 
 

   
    

  

 
Notice that now the index  is associated to the point , because 
we pass locations as an array with two elements   and 
we count array elements from zero. 
 
The solution for this system is as follow: 

  

Notice that the weight attached for both data points in the estimation 
of the variable without error ( ) is the same. Surprisingly the 
solution vector for  give a reduced power to  and a large 
power to , filtering in some way the error. 
 
 
CONCLUSIONS 
The proposed algorithm, based on RFs defined as , with drift 

, can handle a large number of kriging models, included new, 
uncommon and complex models. That is possible because the source 
code that build the kriging system of equations was not predefined for 
a set of specific kriging models. Are the users whom define the 
kriging model, passing the appropriated set of data and parameters to 
the function responsible to build the kriging system. It is also possible 
because users have access to the kriging system of equations, which 
can be modified before be solved.  
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APPENDIX 
The source code of the library can be downloaded from the 
website http://OpenKriging.webs.com 
 
Some links with modules recommended or necessary to work with the 
library are:  

Numpy http://numpy.scipy.org/ 
Matplotlib http://matplotlib.sourceforge.net/ 
Visual Python http://vpython.org/ 
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