C Revista Minería y Geología, Cuba

3. Se pudo comprobar la efectividad de la aplicación de los métodos geólogo-geomorfológicos de la evaluación pronóstico de los yacimientos de corteza de intemperismo ferroniquelífera al hacer las comparaciones con los datos obtenidos por la Empresa de Geología de Santiago (EGS) en las diferentes etapas de exploración.

REFERENCIAS

- 1. COBIELLA, J.L. y J. Rodríguez: "Algunos rasgos de la geología oriental" en <u>Ciencias Tecnicas</u>, serie Geodesia y Geofísica, no. 3, 1978.
- 2. GARCIA, G.: "Regularidades de la distribución de las cortezas de intemperismo ferroniqueliferas de los macizos serpentiniticos de Cuba, como base en los trabajos de búsqueda y exploración de los yacimientos de niquel y cobalto". Disertación para la obtención del grado de Candidato a Doctor, ISMMMoa, 1978.
- 3. Knipper, A.L. y R. Cabrera: "Tectónica y geología histórica en la zona de articulación entre el mio y eugeosinclinal y del cinturón hiperbasítico de Cuba" en <u>Contribución a la geología de Cuba</u>, publicación especial no. 2, Academia de Ciencias, 1974.

ESTADO TENSIONAL DEL MACIZO POR LA LINEA DE CARGAS AL CORTAR BLOQUES DE MARMOL CON MECHA DETONANTE EN BARRENOS RELLENOS CON AGUA

RESUMEN

En el trabajo se determinan los parametros de las ondas de tensión en el macizo de marmol para el caso de la explosión de mezcla detonante, rellenando los barrenos con agua, para distintos diametros de los barrenos y diferentes distancias entre ellos, estableciéndose la influencia de estos factores sobre el estado tensional del macizo.

También se determina las tensiones producidas por los productos de la explosión. En ambos casos se establece la comparación con los límites de resistencia a tracción estática y dinámica del mármol.

Аннотация

В работе определяются параметры волн напряжения в мраморном массиве для случая взрывания детонирующего шнура в шпурах, накопленных водой, при различных диаметрах шпуров и различиме расстояния между ними, устанавливающими влияние этих факторов на напряженное состояние массива. Кроме этого, определяются значения напряжений, возникающих от продуктов взрыва.

В обоих случаях производится сравнение с пределом прочности при статическом и динамическом растяжении мрамора.

Revista Minería y Geología, 1-83

ESTADO TENSIONAL DEL MACIZO POR LA LINEA DE CARGAS AL CORTAR BLOQUES DE MARMOL CON MECHA DETONANTE EN BARRENOS RELLENOS CON AGUA

José A. Otaño Noguel Ingeniero de Minas, Profesor Titular Facultad de Minería del ISMMMoa

El corte de bloques de mármol de forma regular mediante la explosión con mecha detonante en barrenos rellenos con agua requiere de una elección correcta de los parámetros: diámetro y profundidad de los barrenos, distancia entre los mismos y longitud de la carga.

Para elegir correctamente estos parámetros es necesario tener una concepción clara acerca del carácter del desarrollo de los procesos de deformación del macizo al explosionar las cargas según un determinado esquema.

El mecanismo de la acción de la explosión en los distintos medios, entre ellos la roca, se ha estudiado de tal forma que actualmente se pueden determinar los parámetros de las ondas de tensión para distintos esquemas de explosión por vía analítica. A continuación se da la determinación de los parámetros de las ondas de tensión en el macizo de mármol de la cantera "Rosa Aurora" de la Empresa "Pepín Vázquez" de la provincia Granma, para el caso de la explosión con mecha detonante, rellenando los barrenos con agua, para distintos diámetros de los barrenos y diferentes distancias entre ellos.

PARAMETROS INICIALES DE LAS ONDAS DE CHOQUE EN EL AGUA AL HACER EXPLOSION LA MECHA DETONANTE El cálculo se realizó teniendo en cuenta la compresibilidad del agua y la variación del estado de los productos de

116

la detonación, según una ley isentrópica con índice constante [1].

$$\mathbb{P}f^{-K} = a \tag{1}$$

La presión inicial en los productos de la detonación:

$$P_{\rm H} = \frac{\rho_{\rm D}^2}{K+1}$$
 (2)

La velocidad de la onda de depresión en los productos de la detonación:

$$U = \frac{D}{K+1} \left\{ 1 - \frac{2K}{K-1} \left[1 - \left(\frac{P_x}{P_H} \right)^{\frac{K-1}{2K}} \right] \right\}$$
(3)

La velocidad de los límites en el momento inicial:

 $U_{x} = \sqrt{\frac{P_{x}}{\rho_{o}}(1 - \gamma_{x})}$ (4)

La velocidad inicial de la onda de choque en el agua:

$$u_{\rm h} = \frac{U_{\rm x}}{1 - \frac{\rho_0}{\rho_{\rm x}}}$$
(5)

$$\int_{\mathbf{x}} = \frac{f_{0}}{f_{\mathbf{x}}} = \frac{1}{\left(\frac{\mathbf{P}_{\mathbf{x}}}{\mathbf{x}} + 1\right)^{\frac{1}{n}}}$$
(6)

La conación de estado del agua:

$$\begin{aligned} F = A \left[\left(\frac{P_X}{f_0} \right)^n - 1 \right] \end{aligned} (7) \\ \text{donde: } \int - \text{densidad del TEN en la mecha} \\ D - \text{velocidad de detonación del TEN en la mecha} \\ D = 8 \cdot 10^5 \text{ om/s} \\ \text{K - Índice de la isentrópica, K = 3} \\ P_X - \text{presión en el límite de los medicos, kg/cm2} \\ f_0 - \text{densidad inicial del agua} \\ f_0 = 1,025 \cdot 10^{-6} \text{ kg.s}^2/\text{om}^4 \\ f_X - \text{densidad del agua en el frente de la onda, kg.s2/cm4} \\ A - \text{constante en la ecuación de estado del agua} \\ A = 3 940 \text{ kg/cm2} \\ \text{n - constante de compresibilidad del agua} \\ n = 8 \end{aligned}$$
Los parámetros iniciales de la onda en el agua U_x, P_x, se determinaron solucionando las ecuaciones (3) y (4) por el método grafoanalítico, construyendo en coordenadas U, P las dependencias:

$$U = f(P_x)$$

P _x ,kg/cm ²	2,56•10 ⁵	1,9•10 ⁵	1,5•10 ⁵	1,0.105	0,3.105
U,m/s	2 000	2 570	3 020	3 620	5 060
Para la ecu	ación (4):				
P _x kg/cm ²	2,5.10 ⁵	1,0,105	1,5•10 ⁵	1,0.10 ⁵	
η _x	0,595	0,61	0,63	0,66	
U m/s	3,200	2,790	2,360	1,840	

El punto de intersección de las características en la Figura l corresponde al momento de divergencia de la onda y da el valor de los parámetros iniciales:

> $P_x = 1,83 \cdot 10^5 \text{ kg/cm}^2$ $U_x = 2 640 \text{ m/s}$

La presión inicial de los productos de la detonación:

 $P_{\rm H} = 2,56.10^5 \, \rm kg/cm^2$

y la velocidad inicial de la onda de choque:

 $D_{ch} = 6 860 \text{ m/s}$

PARAMETROS DE LAS ONDAS DE TENSION EN EL AGUA EN EL CONTACTO CON EL MARMOL EN LA PARED DEL BARRENO PARA DISTINTOS DIAMETROS DE ESTE Los parámetros de las ondas de tensión se calcularon según la metodología elaborada por V.A. Borovikov [2].

CARACTERISTICAS DE LA SE (TEN)

Densidad $f = 1,6 \cdot 10^{-6} \text{ kg} \cdot \text{s}^2/\text{cm}^4$

Calor de la explosion Q = 1 360 kcal/kg

Velocidad de detonación $D = 8 \cdot 10^5 \text{ cm/s}$

CARACTERISTICAS DEL MARMOL Densidad $\beta_o = 2,69 \cdot 10^{-6} \text{ kg} \cdot \text{s}^2/\text{cm}^4$ Velocidad de difusión de las ondas longitudinales $C_o = 5,9 \cdot 10^5 \text{ cm/s}$ Transversales $C_t = 3,2 \cdot 10^5 \text{ cm/s}$ Coeficiente de Poisson $\mu = 0,29$ Resistencia de onda $\beta_o C_o = 1,587 \text{ kg} \cdot \text{s/cm}^3$ CARACTERISTICAS DEL AGUA Densidad $\beta_a = 1,025 \cdot 10^{-6} \text{ kg} \cdot \text{s}^2/\text{cm}^4$ Velocidad del sonido $C_a = 1,46 \cdot 10^5 \text{ cm/s}$ Resistencia de onda $\beta_a C_a = 0,15 \text{ kg} \cdot \text{s/cm}^3$

La presión máxima en el agua al llegar la onda a la pared del barreno se determina por la dependencia empírica de B.D. Jristoforov y E.A. Shirokova para pequeñas \overline{R} [3].

$$P_{max} = \frac{41\ 800}{R^{1},08} \tag{8}$$

como esta dependencia se obtuvo para una carga cilíndrica de trotil con densidad 1,6 g/cm³ y calor de la explosión 1 060 kcal/kg, se determinó el radio de la carga de trotil equivalente a una carga de TEN de radio 1,5 mm:

 $R_c = R_c^* \sqrt{\frac{\rho_Q}{\rho_T Q_T}} = 0,17 \text{ cm}$

120

	r.			
I	$\bar{x} = \frac{-b}{R_c}$			
Atatintas Atantuss to		1		8
para distintos diametros te	enemos:			
Diametro del barreno, mm	22	32	36	42
Radio relativo	6,47	9,41	10,58	12,35
Presión máxima kg/cm ²	5 564	3 712	3 271	2 768
			-	
res de Pmax, se determinard Pmax = J	on por las $ \rho_{a}\left[1+\frac{P}{2}\right] $	s formula $\frac{\max}{B} \int_{n}^{\frac{1}{n}}$	83	
res de Pmax, se determinard Pmax = J	on por la $P_{a}\left[1+\frac{P_{a}}{2}\right]$	s formula $\begin{bmatrix} \max \\ B \end{bmatrix}^{\frac{1}{n}}$	4.8	
res de Pmax, se determinaro $f_{\rm max} = f$ Vmax =)	$P_{a}\left[1+\frac{P_{1}}{P_{max}}\right]$	s formul: $\frac{\max_{B}}{B} = \frac{1}{n}$ $\frac{1}{P_{a}} = \frac{1}{P_{m}}$	as ax	
res de Pmax, se determinaro //max = / Vmax = / donde: B = 3 048 kg/cm ²	on por la $P_a \left[1 + \frac{P}{Pmax} - \frac{P}{Pmax} \right]$	s formula $\frac{\max}{B} \int_{a}^{\frac{1}{n}} \frac{1}{f_{n}^{n}}$	as ax	
res de Pmax, se determinaro $f_{max} = f$ Vmax = donde: B = 3 048 kg/cm ² n = 7,15	on por la $P_a \left[1 + \frac{P_1}{P_1} \right]$	s formula $\frac{\max B}{B} \int_{-\frac{1}{P_{m}}}^{\frac{1}{m}}$	as ax	
res de Pmax, se determinaro $f_{max} = f$ Vmax = 1 donde: B = 3 048 kg/cm ² n = 7,15 dando los valores:	on por la	s fórmul: $\frac{\max B}{B} \int_{-\frac{1}{P_{m}}}^{\frac{1}{m}}$	as ax	
res de Pmax, se determinaro $\int max = \int Mmax = \int$	on por la $P_a \left[1 + \frac{P_1}{P_1} \right]$	s formula $\frac{\max B}{B} \int_{-\frac{1}{P_m}}^{\frac{1}{m}} \frac{1}{P_m}$ 32	as ax 36	42
res de Pmax, se determinard $f_{max} = f$ Vmax = 1 donde: B = 3 048 kg/cm ² n = 7,15 dando los valores: Diámetro del barreno, mm max, kg.s ² /cm ⁴	on por la $P_a \left[1 + \frac{P}{2} \right]$ $P_{max} - \frac{P}{22}$ 1,185	s fórmula $\frac{\max}{B} \int_{-\frac{1}{P_{m}}}^{\frac{1}{m}} \frac{1}{P_{m}}$ $\frac{1}{P_{m}} \sim \frac{1}{P_{m}}$ 32 $1,145$	as ax 36 1,135	42

PARAMETROS DE LAS ONDAS DE TENSION

EN EL MARMOL EN EL CONTACTO CON EL AGUA

El cálculo se realizó por la ecuación (1):

$$\sqrt{\frac{P_{f}}{P_{o}}} \left[1 - \frac{1}{\left(\frac{AF_{f}}{P_{o}C_{o}} + 1\right)^{\frac{1}{m}}} = \forall \max - \frac{1}{\left(\frac{AF_{f}}{P_{o}C_{o}} + 1\right)^{\frac{1}{m}}} - \sqrt{\frac{P_{f} - P\max}{P_{max}} \left[1 + \left(\frac{P\max + B}{P_{f} + B}\right)^{\frac{1}{m}} \right]}$$
(9)

donde: P_f = presión en el frente de la onda refractada en el mármol

- A = 3
- m = 3

Para la solución de esta ecuación se utilizó el método de aproximaciones sucesivas de Newton:

$$P_{f}^{n+1} = P_{f}^{n} - \frac{f_{2}(P_{f}) - f_{1}(P_{f})}{f_{2}(P_{f}) - f_{1}(P_{f})}$$

donde: $f_1(P_f) y f_2(P_f)$ son las partes izquierda y derecna de la ecuación (9)

y $f'_1(P_f)$, $f'_2(P_f)$ sus correspondientes derivadas.

Como valor inicial se tomó el valor de la refracción acústica

$$P_{f} = Pmax.kr$$
$$k_{r} = \frac{2 f_{o}C_{o}}{f_{a}C_{a} + f_{o}C_{o}}$$

123

llevando el cálculo a la condición

$$\frac{f_2(P_f) - f_1(P_f)}{f_2(P_f) - f_1(P_f)} : \frac{1}{P_p^n} \le 0,001$$

Los parametros P_{f} , V_{f} , N_{f} se determinan por las ecuaciones

se obtuvieron los siguientes valores:

etro del eno, mm	22	32	36	42
kg/cm ²	5 880	3 879	3 398	2 870
kg.s ² /cm ⁴	2,7067.10-6	2,7010.10 ⁻⁶	2,6997.10 ⁻⁶	2,6981.10 ⁻⁶
cm/s	3 673	2 412	2 102	1 777
m/s	5 900	5 900	5 900	5 900
	kg/cm ² kg·s ² /cm ⁴ cm/s	stro del 22 kg/cm ² 5 880 kg·s ² /cm ⁴ 2,7067·10 ⁻⁶ cm/s 3 673 m/s 5 900	stro del 22 32 kg/cm ² 5 880 3 879 kg·s ² /cm ⁴ 2,7067·10 ⁻⁶ 2,7010·10 ⁻⁶ cm/s 3 673 2 412 m/s 5 900 5 900	atro del 22 32 36 kg/cm ² 5 880 3 879 3 398 kg·s ² /cm ⁴ 2,7067·10 ⁻⁶ 2,7010·10 ⁻⁶ 2,6997·10 ⁻⁶ cm/s 3 673 2 412 2 102 m/s 5 900 5 900 5 900

Como se observa, la velocidad del frente de la onda de tensión se difundirá desde el barreno con una velocidad constante igual a la velocidad del sonido C_o en el mármol.

TENSIONES EN EL MARMOL POR LA LINEA DE BARRENOS

Al calcular las tensiones por la línea de situación de las cargas es necesario determinar la influencia del relleno de agua y elegir la ley de extinción de las tensiones con la distancia. Elegimos la ley de extinción de las tensiones propuesta por V.A. Borovikov en la forma:

$$\sigma_f = \sigma_f \frac{1}{\overline{R}^{1,08}}$$
(10)

donde σ_{e} - presión en el límite carga medio.

Para considerar la influencia del relleno de agua, cambiamos el espacio de agua por mármol y calculamos la presión inicial \mathcal{O}_{max} que debe desarrollar la explosión de una carga de radio Rc = 0,17 cm (tomando una carga de trotil equivalente a la de TEN) en el contacto carga mármol para que a la distancia r = $\mathbb{R} \cdot \mathbb{R}_c$ del centro de la carga, la tensión en el frente de la onda extinguiéndose según la ecuación (10) sea igual a \mathcal{O}_f , es decir, la tensión en la pared del barreno al explosionar con espacio de agua.

Entonces

 $\overline{\mathcal{O}}_{f} = \overline{\mathcal{O}}_{\max} \frac{1}{\overline{R}^{1,08}}$ $\overline{\mathcal{O}}_{\max} = \overline{\mathcal{O}}_{f}(\overline{R})^{1,08}$

y la ecuación para calcular $\sigma_r = f(r)$ tendrá la forma:

 $\overline{r} = \frac{r}{R}$

 $\sigma_{\mathbf{r}} = \sigma_{\mathbf{f}}(\mathbf{\bar{R}})^{1,08} \tag{11}$

donde:

124

r - distancia del punto del macizo considerado al centro ' de la carga.

El cálculo de las tensiones tangenciales se realizó por la ecuación

 $\sigma_{t} = (1 - 2b^2) \sigma_{r}$

(12)

 $b = \frac{c_t}{c_t}$

que corresponde a un medio elástico-lineal [5,6].

El cálculo de las tensiones σ_r por la ecuación (11) y σ_t por la ecuación (12) a distintas distancias del centro del barreno para los distintos diámetros estudiados se dan en la Tabla l.

Si las cargas en los barrenos contiguos se explosionan al unísono, las ondas de ambas cargas se encuentran en el centro de la distancia entre barrenos, formándose una zona donde las tensiones son producto de la interacción de ambas ondas.

Las coordenadas de los puntos con valores mínimos de las tensiones se determinan por la ecuación:

$$1 + e^{-\frac{2r_* - D}{C_0 Q}} = \frac{r_x}{D - r_*}$$
(13)

donde: r_{*} - distancia del eje de la carga hasta el punto con mínimo valor de la tensión

D - distancia entre ejes de las cargas

Q - constante de tiempo de la caída exponencial de la presión en la onda

$$R = \frac{R^{0,43} \cdot R_c^{0,57}}{827}$$

Los valores de las coordenadas de los puntos de mínima tensión para los distintos diámetros y distancias entre cargas investigadas se recogen en la Tabla 2.

Según los datos de las Tablas 1 y 2 se construyeron los gráficos de las tensiones tangenciales máximas entre los barrenos (Figuras 2 y 3), teniendo en cuenta que entre los puntos con coordenadas r_* y D - r_* la tensión sería la suma de la acción de ambas ondas y en el centro ($r = \frac{D}{2}$).

$$\sigma_{\text{tmax}} = 2 \sigma_{t}(\frac{P}{2})$$

En los gráficos con líneas de punto se señalan los límites de resistencia estático y dinámico del mármol, donde se observa que las tensiones superan el límite de resistenoia estático en todos los puntos entre cargas, en todos los casos estudiados, mientras que el límite de resistencia a tracción dinámico es menor sólo en un radio del eje de la carga que disminuye al aumentar la distancia entre ejes.

Cancias del	Centro	der par	reno.			• d = 22	2 mm		4			*		
r, cm	3	5	6,3	7,5	9,5	10	10,9	11	12,5	15	18	20	22	25
Tr, kg/cm ²	1 998	1 147	894	740	573	542	494	489	426	350	287	256	231	201
σ _t , kg/cm ²	823	473	368	305	236	223	204	201	176	144	118	105	95	8
		14				d = 32	nm.							
r	3	5	6,2	7,5	10	10,8	12,5	14	15	16	20	25	30	32
σr	1 976	1 134	897	732	536	493	421	372	346	323	254	199	164	15
σt	814	467	369	301	221	203	173	153	143	133	104	82	68	6
-						d = 36	mm	0				1010	-	
r	3	5	6,2	7,5	10	10,7	12,5	15	15,8	18	20	25	30	36
σ_r	1 965	1 128	892	727	533	496	419	344	325	282	252	198	163	134
σt	810	465	368	300	220	204	173	142	134	116	104	.82	67	55
	÷:	1				d = 42	mm.						10	<u>81</u>
r	3	5	6,1	7,5	10	10,6	12,5	15	18,6	20	21	25	30	42
σr	1 961	1 126	907	726	532	499	418	343	272	252	239	198	162	113
σ	808	464	374	299	219	206	172	141	112	104	98	82	67	47

TABLA 1. Valores de σ_r y σ_t por la línea de colocación de las cargas a distintas distancias del centro del barreno.

TABLA 2. Valor de las coordenadas de los puntos de minima tensión.

Diámetro d, mm	Distancia entre cargas D, cm	V _* , cm	D - r., cm
	15	8,7	6,3
22	22	12,5	9.5
	25	14,1	10,9
	15	8,8	6,2
32	25	14,2	10,8
	32	18,0	14,0
	15	8,8	6,2
36	25	14,3	10,7
	36	20,2	15,8
	. 15	8,9	6,1
42	25	14,4	10,6
	42	23,4	18.6

=____

De los valores de la Tabla 1 se desprende que el diametro prácticamente no ejerce influencia sobre los valores mínimos de las tensiones tangenciales (Figura 4), mientras que al aumentar la distancia entre barrenos disminuyen los valores mínimos de las tensiones tangenciales (Figura 5).

Mg. 5. Variación del va pr mínimo de la componente tangencial de las tensiones en istoion de la distancia entre barrenos.

Lus restantes parametros de las ondas de tensión se dan en le Tabla 3.

	ABLA 3.	, cm	, mm	84.2	Д. сп	B. M. B.	max(r), cm/s	•10 ⁻³ , cm			t.			
			22	36	21	7,7	220	0,85		× X				
		15	42	60	35	7.7	216	0,83						
			22	40	24	0*6	19ť	0,72						
20	×2	20	42	70	41	0,6	158,8	0,71		2				
į			22	45	27	10,4	126,6	0,66						
		25	42	80	47	10,4	124,8	0,65						
	а		22	50	30	11,9	104	0,62	*					
		30	42	90	53	9,11	102	0,61						
			22	55	32	13,5	85,7	0,58						
	×	36	42	102	60	13,5	83,8	0,57						
			22	60	35	15,2	72,5	0,55						

La duración de la fase de compresión $\mathcal{T} = \mathcal{T}_0 + nr$, microsegundos [6] $\mathcal{T} = 22 + 0,92$ r, para d = 22 mm $\mathcal{T} = 30 = 2r$, para d = 42 mm

La longitud de la fase de compresión:

l=cot

La velocidad de desplazamiento:

 $Vmax = \frac{\sigma_{max(r)}}{\rho_0 c_0}$

El desplazamiento:

 $W = \frac{V_{\text{max}}}{2} C_{\text{H}}$

 $C_{\rm H} = R_{\rm c}(2,25 + 0,032 \ \bar{r})$ tiempo de crecimiento de las tensiones hasta el máximo, micro-segundos.

Según la longitud de la fase positiva de la onda se puede afirmar que para distancias entre los barrenos de 15 a 42 cm en el momento del encuentro de las ondas de los barrenos contiguos, el macizo se encuentra en estado de compresión, ya que la fase negativa se atrasa del frente de la onda una distancia superior a la distancia entre cargas.

TENSIONES PRODUCIDAS POR LA PRESION RESIDUAL DE LOS PRODUCTOS DE LA EXPLOSION DE LA MECHA DETONANTE EN EL BARRENO CON AGUA

Para calcular la presión de los productos de la explosión hay que determinar el volumen límite de líquido abarcado por ellos [1].

El esquema real de situación de la carga en el barreno se da en la Figura 6 a.

Separando dos secciones horizontales de un tramo de barreno de altura 1 cm y representándolo en forma de rectángulo con volumen equivalente (Figura 6 b), el volumen de la carga $V_c = 0,07$ cm³ y del agua $V_a = 3,73$; 7,91; 10,1 y 13,78 cm³.

Si se supone la presencia a la izquierda de la carga de una barrera rígida, la condición de formación de la presión residual en un volumen cerrado será similar a la real en la Figura 6 a. La ecuación de estado de los productos de la explosión tendrá la forma:

 $p = A_{0} \rho_{0}^{K}$

. .

y la ecuación de estado del agua:

 $\mathbf{p} = \mathbb{A}(\boldsymbol{\rho}_1^n - \boldsymbol{\rho}_o^n)$

donde: ρ_e - densidad de los productos de la explosión ρ_1 - densidad final del agua

A_o y A - constantes de compresibilidad de los productos de la explosión y el agua, respectivamente.

Para D = 8 000 m/s, $P = 1,6 \text{ g/cm}^3 \text{ y K} = 3$.

$$f_{\rm H} = \frac{D^2}{2g(K+1)} = 1,28 \cdot 10^5 \text{ kg/cm}^2$$

136

It is not the second the expansion de los gause "s" y
al correspondients volumen de agua comprisión de los gause "s" y
activitation estatemaina de la relación
$$f(t)$$
 ($\frac{1}{2} + \frac{1}{2}$) $\frac{1}{2}$.

$$\frac{1}{2\sqrt{2}} \left(f(t) + \frac{1}{2} + \frac{1}{2} \right)^{K} \left[\left(\frac{1}{2} + \frac{1}{2} \right)^{K} - \frac{1}{2} \right]$$

$$\frac{1}{2\sqrt{2}} \left(f(t) + \frac{1}{2} + \frac{1}{2} \right)^{K} \left[\left(\frac{1}{2} + \frac{1}{2} \right)^{K} - \frac{1}{2} \right]$$

$$\frac{1}{2\sqrt{2}} \left(f(t) + \frac{1}{2} + \frac{1}{2} \right)^{K} \left[\left(\frac{1}{2} + \frac{1}{2} \right)^{K} - \frac{1}{2} \right]$$

$$\frac{1}{2\sqrt{2}} \left(f(t) + \frac{1}{2} + \frac{1}{2} \right)^{K} \left[\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{K} - \frac{1}{2} \right]$$

$$\frac{1}{2\sqrt{2}} \left(f(t) + \frac{1}{2} + \frac{1}{2}$$

TABLA 4. Valor de las tensiones provocadas por la presión estática de los productos de la explosión en la superficie que pasa por el eje de los barrenos, kg/cm².

			and the second se		
D cm d, mm	15	25	32	36	42
22	262,6	147,4	112,8	99,5	84,5
32	240	130	98,3	86,3	73
36	233,4	124,3	93,7	82,1	69,3
42	229,4	119,1	89,1	77,9	65,5
					And the second se

En todos los casos la magnitud de las tensiones estáticas es superior al límite de resistencia del mármol a la tracción estática.

La dependencia de estas tensiones del diametro de los barrenos y la distancia entre cargas se dan en las Figuras 7 y 8.

REFERENCIAS

1. BAUM, F.A., K.P. Ștaniukovich y B.I. Shexter: Física de la explosión (en ruso), Ed. Fizmatgiz, 1959.

2. BOROVIKOV, V.A. y J.F. Vaniagin: <u>Física de la fragmen-</u> tación explosiva (en ruso), Ed. del IML, Leningrado, 1974.

C Revista Minería y Geología, Cuba

3. JRISTOFOROV, B.D. y E.A. Shirokova: <u>Parametros de las</u> ondas de choque en las explosiones subacuaticas <u>de cargas de barrenos</u> (en ruso), PMTF no. 5, 1962.

- 4. BOROVIKOV, V.A., Y.M. Misnik, S.I. Moiseiev y V.V. Sichov: "Sobre el calculo de los parametros de las ondas de tension en la explosión de cargas con espacios radiales de aire y agua". <u>Colección Trabajos de Construcción de Minas y Explosivos</u> (en ruso), lra. ed., Tula, 1973.
- 5. XANUKAEV, A.N.: Procesos físicos en el arranque de rocas con explosivos (en ruso), Ed. Nedra, 1974.
- 6. LURSMANASHVILLI, G.S.: "Investigación de los métodos de fragmentación de las rocas" en <u>Investigaciones</u> en el campo de nuevos materiales de construcción <u>y maquinas</u> (en ruso), Ed. Stroizdat, 1973.

142

SOBRE EL AHORRO DE ENERGIA ELECTRICA MEDIANTE LA RACIONALIZACION DEL SERVICIO ENERGETICO DE EMPRESAS DE PRODUCCION

RESUMEN

En el trabajo se analizan las posibilidades de economía de energía eléctrica y la elevación de las potencias instaladas a través de la elevación del factor de potencia en empresas de producción, así como sobre la racionalización de la carga de los equipos de fuerza.

Se muestran resultados obtenidos al analízar esta situación en el servicio energético de la fábrica "Comandante Pedro Soto Alba" en Mos y la "Comandante Manuel Fajardo Rivero" en Manzanillo, representantes, respectivamente, de empresas consumidoras grandes y medias.

Аннотация

В работе анализируются вожможности экономии электрической энергии и повышение использования установленных производственных мощностей посредством увеличения фактора мощности производственных предприятий и рационализации загрузки си-лового оборудования.

Демонстрируются результаты, полученные при анализе этой ситуация энергетической службы фабрики "Педро Сото Альба" г. Моа и " Мануель Фахардо" в Мансанилье, представляющих собой соответсвенно потребителей и средста-мощные и небольшие.

Revista Minería y Geología, I-83