puede De estos resultados se apreciar lo siguiente:

- La masa volumétrica de los diferentes tipos de rocas oscila en un pequeño rango de 2,46 a 2,74 g/cm³, al igual que la densidad de 2,58 a 2,81 g/cm3 .
- La humedad de las rocas es nunca relativamente baja y llega a un 3 % .
- La porosidad abierta y total es pequeña, teniendo la peridotita la mayor porosidad con 5,32 % .
- La relación entre los valores de la resistencia a compresión muestras determinada con regulares y la resistencia a tracción oscila alrededor de 9.
- La relación entre los valores de resistencia obtenidos COD auestras irregulares y regulares oscila entre 0,21 y 0,23.

Los valores de la resistencia de la roca obtenida en general se corresponden con los de la liteteratura.

CONCLUSIONES

De los resultados obtenidos se puede apreciar que las rocas estudiadas tienen una fortaleza, que como promedio oscila entre 3 y 5, una pequeña porosidad y baja humedad.

Los resultados obtenidos de los diferentes ensayos de las propiedades de las rocas estudiadas son confiables, ya que incluso para las determinaciones hechas con muestras irregulares se obtienen coeficientes de variación que están dentro del rango permisible para este tipo de trabajo.

CDU: 669.053.2.622.795.06

ESTUDIO DE LA OCLUSION DEL OXIGENO EN LA PARTE METALICA DEL SINTER DE NICARO

Lic. Eduardo L. Pérez C. ; C.Dr. Rafael López C. ; Lic. Geonel Ródríguez G. ; Lic. Angel Gutierrez C. ; Lic. Ciro Curvelo R. ; Universidad de La Habana.

RESUMEN

Se llevó a cabo el estudio del fenómeno de la oclusión del oxígeno en el proceso de obtención del sinter de Nicaro. Se analizaron nuestas con tamaño de partícula < 45 μm , y muestras templadas partiendo de condiciones de equilibrio termodinámico temperaturas de 1 273, 1 533, 1 563 y 1 633 K ; así como una muestra de sinter sometida a un proceso de flotación donde se aisló la parte metálica de este compuesto. En el presente trabajo se describe el dispositivo diseñado para el templado de las muestras.

Fue analizada una muestra sintética de Ni - NiO en proporción 7:1 semejante a la que se encuentran estos elementos en el sínter. Las naturaleza del primer efecto observado en los termogramas de TRP se explicó, y se demostró el alto contenido de oxígeno ocluido, presente en la fase metálica del sinter.

El Instituto Superior Minero Metalufgico de Moa oferta Estudios especialidades de Postgrado para los egresados universitarios en de Geología, Minas y Metalurgia.

En el período correspondiente a enero-junio de 1989 impartirán 88 los siguientes estudios de postgrado:

- Planificación y proyección de los trabajos de prospección geológica

- Expolotación subterránea
- Laboreo de excavaciones subterráneas
- Topografia
- Introducción de la Petrología
- Preparación Mecánica de los minerales lateríticos

Cualquier información que necesite dirijase a:

Dpto de Postgrado ISMM Las Coloradas Moa Holguín Telf. 6-6548

S REVISTA MINERIA Y GEOLOGIA, 2-88

ABSTRACT

The study of the oxygen oclusion phenomena in the obtention of Nicaro's sinter was carried out.

Samples quenched after thermodynamical equilibrium conditions at 1 273, 1 533, 1 563 and 1 633 K with grain size (< 45 μ m) were analyzed. The equipment for quenching is described. A specialy mixed Ni-NiO sample with 7:1 proportion similar to that existing in the sinter of these elements Was also investigated. Other sample submeted to a flotation process which allowed the separation of the metallic part to sinter was also analized.

The nature of the first effect observed in the TRP thermograms was explained and the presence of high content of ocluded oxygen in the metal phase of sinter Was demonstrated.

INTRODUCCION

Es conocida la importancia de este producto industrial para nuestro país. No obstante representar una fuente de divisas aparecen muy pocos datos reportados en la literatura científica acerca de las propiedades físico-químicas de este producto, tanto desde el punto de vista termodinámico como cinético y estructural.

El presente trabajo abarca un aspecto importante de este producto, relacionado con la oclusión de oxígeno en la fase metálica durante el proceso final de sinterización que tiene lugar en la fábrica. Este fenómeno ha sido estudiado por varias técnicas y tanto su importancia como su naturaleza hacen del mismo un fenómeno complejo, imposible de abarcar en un solo reporte científico.

Debido a que un parámetro importante en la fabricación de aceros es la concentración de oxígeno en su estructura, y debido a que el sínter es utilizado en la obtención de estos materiales los autores han tratado de investigar la naturaleza de este elemento en dicho producto; partiendo del hecho de que el sinter de Nicaro presenta propiedades magnéticas más acentuadas que otros sinters obtenidos por otras vias.

Una técnica muy selectiva a los diferentes grados de reducibilidad de un compuesto es la termorreducción programada [1], esta es relativamente joven, pero cada vez más se abre paso en la investigación de la química del estado sólido.

La reducción es medida controlando el consumo de hidrógeno, cuando se incrementa la temperatura de la muestra a una velocidad constante.

De esta forma aparecen uno o más picos de reducción a diferentes temperaturas, y así, de una manera sencilla se obtiene el espectro de reducción. En la literatura científica aparecen excelentes reportes acerca de las aplicaciones y utilidades de esta técnica [7], sin embargo resulta difícil comparar los espectros de TRP obtenidos por diferentes investigadores, debido a que las condiciones experimentales difieren considerablemente en cuanto a la concentración de hidrógeno de la mezcla reductora, la velocidad de flujo de la misma, tamaño de partícula de la muestra, así como en la historia térmica de la misma [4].

Estos factores por separado no afectan el perfil del espectro, pero es posible que las condiciones óptimas varien bruscamente de una sustancia a otra, atendiendo a las diferencias de reducibilidad de los materiales investigados. Generalmente la información obtenida de un espectro de TRP es Una mayormente cualitativa. cuantitativa aproximación 85 difícil debido a la complegidad del proceso de reducción del óxido en todo su volumen, donde pueden tener lugar diferentes mecanismos de reducción [5].

Otra gran ventaja de esta técnica radica en el hecho de que, además de su alta sensibilidad no depende de ninguna otra propiedad específica de la sustancia a investigar, sólo exige que la misma sea capaz de reducirse [4].

Basándonos en las posibilidades del TRP resulta claro que, si en la sinter fase metálica del (entiéndase por esta la parte que comprende al niquel conjuntamente con las impurezas metálicas a el asociadas) existe una cantidad de ocluido. el efecto oxigeno correspondiente a la reducción del mismo debe aparecer a temperaturas diferentes a la reducción que tendrá lugar para el NiO, el cual constituye la parte oxidada de este Preferiblemente es producto. razonable suponer que los efectos de hidrógeno de conversión correspondientes al oxígeno ocluido aparezcan a temperaturas inferiores a los del óxido de níquel, al menos por el hecho de que el mismo debe encontrarse menos fuertemente retenido que el oxígeno que participa en el enlace Ni - O.

Suponer que existe oxígeno ocluido en el sinter no es sorprendente, pués partiendo del hecho de que las fases mayoritarias de este producto son el Ni y el NiO, y considerando que las temperaturas de sinterización en el proceso fabril son elevadas es lógico suponer una reacción al estado sólido entre ambos, con la consiguiente migración de los aniones oxígeno hacia el interior de la estructura del níquel. Un estudio detallado del sistema Ni -NiO. y específicamente de la migración del oxígeno con ayuda de marcadores fue realizada por B. M. Shedrin y otros, en este trabajo se ve claramente la variación con el tiempo de la frontera que indica la. migración de este elemento hacia el interior de la capa de níquel metálico.

DESARROLLO

Tal y como se mencionó en la introducción del presente trabajo, las técnicas utilizadas fueron la difracción de rayos x y la termorreducción programada.

El trabajo se desarrolló siguiendo la siguiente lógica: primeramente se seleccionaron varias muestras de diferentes partidas de sínter y se pulverizaron hasta obtener un tamaño de partícula muy pequeño (< 45 μ m). Estas muestras se sometieron a un procedimiento de homogenización de tamaño de grano, por la conocida técnica de cuarteo, para asegurar precisamente esa dimensión del grano.

Con el objetivo de discriminar la naturaleza del oxígeno ocluido se seleccionaron además muestras de NiO polvillo, provenientes de la descomposición del carbonato básico amoniacal del mismo proceso fabril.

Además, es lógico suponer que a elevadas temperaturas pueda ocurrir una desorción de este oxígeno, por lo que también se escogieron muestras templadas a 1 273, 1 523, 1 563 y 1 633 K . Estudios colaterales por otras técnicas demuestran que realmente existe una desorción lenta de este oxígeno,

42

43

este tema sin embargo será tratado en un reporte aparte. Es por esa razón que se han escogido estas temperaturas para mostrar gráficamente los diferentes perfiles de TRP para todas la; muestras estudiadas.

El esquema del equipo de TRP utilizado se muestra en la figura 1. El templado de las muestras se llevó a cabo en un equipo diseñado al efecto, el cual permitió realizar dicha operación en condiciones de equilibrio termodinámico. En la figura 2 se muestra dicho equipo.

La condición de equilibrio termodinámico se comprueba por estabilidad de la fuerza electromotríz generada, debido al gradiente del potencial químico del oxígeno a ambos lados del electrolito sólido de 0,85 ZrO₂ -0,15 CaO que se utiliza.

El principio del trabajo de estos electrolitos será descrito en [8] .

Una vez que la temperatura deseada te alcanzó el equilibrio termodinámico, se procedió al templado rápido de la muestra. La velocidad de esta operación fue tal que permitió el enfriamiento de la muestra desde temperaturas del orden de 1 633 K hasta la ambiente en el transcurso de 3 seg . De esta forma fue posible obtener una "huella digital" de la muestra en condiciones de equilibrio termodinámico.

Las condiciones experimentales fueron en todos los casos las siguientes:

Composición de la mezcla reductora: 70 % H - 30 % Ar.

Velocidad lineal de calentamiento: 10 K/min (0,16 K/s).

Termopar de Pt - Rh - Pt - 13 %

Sensibilidad: 10 mV/

medición:

Figura 2 Equipo para templado de muestras con electrolito sólido de ZrO_2 . 15 % CaO

Las condiciones experimentales utilizadas para difracción de rayos x fueron idénticas para todas las muestras, con el objetivo de facilitar la interpretación cualitativa del análisis de fases presentes en el sínter.

En la tabla 1 aparecen las condiciones utilizadas para los registros fotográficos y difractométricos.

RESULTADOS

Los termogramas de TRP (figura 3) de las muestras a las cuales se hace referencia en el desarrollo demuestran la presencia de una fase reducible, adicional a la del NiO presente en el sínter. La muestra utilizada para realizar el análisis cuantitativo fue la del sínter con tamaño de grano $< 45 \ \mu m$. Esta fue seleccionada con el objetivo de

Tabla 1 Condiciones experimentales utilizadas en las mediciones difrac tométricas y fotográficas

Método difragtométrico	Método	fotográfico		
K Cu 1,541 78	K Fe	1,937 28		
3 x 10		-		
1 5				
22 min		-		
40		40		
33 mA	•	33 mA		
juego de colimadores	0	.8		
	Método difragtométrico K Cu 1,541 78 3 x 10 1 s 22 min 40 33 mA juego de colimadores	Método difragtométrico Método K Cu 1,541 78 K Fe 3 x 10 1 5 22 min 40 33 mA juego de colimadores 0,		

Por difracción de rayos x fueron analizadas, al igual que por TRP, las muestras del sínter con tamaño de grano < 45 μ m , el sínter templado a 1 273, 1 563 y 1 633 K , además se obtuvo el difractograma de una muestra de Ni - NiO en proporción 7:1 (semejante a la proporción en que se encuentran estos elementos en el sínter); la cual fue estudiada con el objetivo de ver la influencia de las impurezas presentes en el sínter en el proceso de sinterización.

Se estudió además una muestra sometida a un proceso de flotación, el cual permitió separar la parte metálica (Ni con sus impurezas) de la parte oxidada (NiO y sus impurezas). Una descripción detallada de este método podrá encontrarse en una próxima publicación. garantizar una mayor superficie de contacto entre la mezcla reductora y la sustancia en estudio.

En el trabajo se procedió a hacer una aproximación cuantitativa del cálculo de las fases reducibles diferentes presentes en las muestras teniendo en cuenta las inconveniencias inherentes - a1 método, en cuanto al aspecto cuantitativo se refiere, a lo cual se hizo referencia 1a en introducción de este trabano. No obstante lo anteriormente señalado. esta aproximación es suficiente para dilucidar la naturaleza de las fases de interés. Las condiciones de velocidad de flujo, por ciento de hidrógeno en argón de la mezcla reductora, forma del portamuestras así como su control y secado fueron escogidas basándonos en los trabajos más serios publicados al respecto a nuestra disposición [11 - 31.

Figuras 3 Termogramas de TRP de las muestras: A. Sínter con tamaño de grano < 45 μ K ; B. NiO procedente de la calcinación del carbonato básico de níquel; C. Sínter sometido un proceso de flotación; D. Sínter templado a 1 273 K ; E. Sínter templado a 1 563 K ; F. Sínter templado a 1 633 K .

47

Reproduciendo experimentos reportados para compuestos ampliamente estudiados, por ejemplo $V_2 O_5$, se logró una magnífica concordancia con los resultados obtenidos por otros investigadores. Teniendo en cuenta todo esto, se realizaron los cálculos cuyos resultados se presentan en la tabla 2. reportados en la literatura para la reducción del NiO. Observando además el por ciento obtenido de la fase oxidada bajo esta consideración, se ve que no hay concordancia con los datos reportados por la fábrica "Cmdte René Ramos Latour" para el por ciento de NiO que debe estar entre 10 - 15 %.

Tabla	2	Aproximación	cuantitativa	del	cáiculo	de	abundancia	de	fases	
		oxidadas por	TRP							

Fase	Consumo de H %	% de sustancia que se reduce (si se asume como:
desconocida	21,9	3,2 (NiO) 0,68 (O disuelto)
NiO	78,0	10,7

En la identificación de las fases oxidadas se valoraron varias posibilidades. El cálculo del por ciento de abundancia de la fase correspondiente al primer efecto del termograma de TRP dió como resultado un valor de 3,2 % considerando que la misma era NiO.

En la tabla 3 se muestran las temperaturas de reducción para las muestras analizadas. Como puede observarse, la temperatura a la cual ocurre la reducción (temperatura del inicio del efecto) es de 503 K , lo que no se corresponde con los datos Por lo anteriormente expuesto se deduce que esta fase "oxidada" no puede corresponder a este producto. Considerando que este primer efecto corresponde a oxígeno disuelto en el sínter se obtiene un valor de 0,68 % de este elemento, tal y como se puede ver en la tabla 2.

El segundo efecto del mismo termograma tiene lugar a la temperatura correspondiente a la reportada por la literatura para la reducción del NiO [6]. El por ciento de abundancia calculado fue de 10,67, valor este que se

Tabla 3 Temperaturas de aparición en los efectos para las muestras estudiadas por TRP

Muestra	T (1)	T (pico)	T (f))	T (1)	T (pico)	T (f)
sinter < 45 µm	503	569	629	629	719	850
sínter 1 273 K	563	693	753	753	803	953
sínter flotado	475	541	567	-3		· -
sínter 1 563 K	-	-	-	903	958	1 008
sínter 1 633 K	-	-	-	993	1 003	1 128
NiO polvillo	-	-	-	603	806	1 013
Donde:						

T (i) - temperatura de inicio del efecto
T (pico) - temperatura máxima de conversión
T (f) - temperatura final del efecto

48

encuentra en el entorno reportado por la planta para el NiO en el sínter.

El análisis del termograma del NiO proveniente de la descomposición del carbonato básico amoniacal arroja un valor de 74,9 % del mismo, lo que no coincide con los datos de la planta que son de 94 - 98 x. Esta diferencia se explica por la cantidad de muestras utilizadas en el registro (0,054 6 g) que no es la adecuada para el cálculo cuantitativo por esta técnica. E1 objetivo fundamental de este experimento fue comprobar que la fase desconocida (primer efecto) observada para la muestra de sinter con tamaño de partícula < 45 μ m , no estaba presente en el NiO proveniente del proceso fabril. Con dicho registro queda demostrado que la fase desconocida debe formarse durante el proceso de sinterización del NiO. En el análisis del termograma de la muestra templada a 1 273 se observan dos picos Cuyas temperaturas de inicio, máximo y final se muestran en la tabla 3.

De la figura 3 se deduce que el primero de los dos picos se solapa con el segundo y sus intensidades prácticamente coinciden. Esto puede estar relacionado con que, en esta muestra ocurre un proceso de disolución parcial de las dos fases del sinter entre si con la formación de la anteriormente llamada fase desconocida, lo que provoca un incremento de su intensidad relativa respecto a la del NiO, y una disminución del efecto correspondiente a esta última.

El análisis de la muestra de sínter templado a 1 273 K puede hacer pensar, que el templado de las muestras q temperaturas superiores a este valor podria conllevar al aumento del primer efecto y a la disminución del segundo. En realidad esto no ocurre así.

Analizando los termogramas de las muestras templadas a 1 563 y 1 633 K se ve tan solo una pequeña reducción a temperaturas muy superiores a los efectos observados en las muestras ya analizadas.

49

Esto puede explicarse como el resultado de la disolución casi total de las fases mayoritarias del sínter entre sí, con la disolución simultánea del oxígeno disuelto a esta temperatura.

Con el objetivo de demostrar la presencia de oxígeno disuelto en la fase metálica se analizó la muestra de sínter sometida al proceso de flotación.

En la figura 3 se observa que el primer efecto encontrado en las muestras de sinter con tamaño de grano < 45 μ m y la muestra templada a 1 273 K se mantiene, lo que revela el hecho de que este efecto esta asociado con la parte metálica de este compuesto. Como puede notarse los efectos aparecen desplazados, lo cual se explica por el hecho de que el tamaño de grano de las muestras flotadas fue mucho mayor de 45 μ m , lo cual es un factor que influye notablemente en la posición e intensidad de los efectos en los registros de TRP, tal y como se comentó en la introducción. En este caso nuestro objetivo sólo fue demostrar que el oxigeno se encuentra disuelto precisamente en el Ni con sus impurezas.

Una información valiosa y decisiva en este caso la brinda la difraccion de rayos x.

Los resultados obtenidos por esta técnica se muestran en las tablas 4 y 9.

De la comparación con los patrones de Ni y NiO (tablas 4 y 9) se observa un comportamiento similar en todas las muestras, pudiendo asegurarse que la aparente variación de la distancia interplanos es insignificante por lo que sólo existe variación en la abundancia relativa de la fase NiO respecto a la del Ni, la cual varia según las condiciones experimentales.

En la figura 4 se muestran los difractogramas de todas las muestras estudiadas.

Figura 4 Difragtogramas de las muestras: I. Ni-NiO 1 523 K ; II. Sínter flotado; III. Sínter 1 273 K ; IV. Sínter 1 563 K ; V. Sinter 1 633 K .

Int. relat. hkl 100 111 42 200 21 220 91 111 100 311 100 57 27 220 11 100 100 311 100 57 20 311 11 13 22 7 13 222 14 8 4 20 15 311 16 311 18 400 1 8 4 1nt. re 2.366 0.005 2.05 0.003 1.466 0.001 1.254 0.000 9 1.202 0.000 8	65,96	51,27	33,78	28,87	68,19	53,67	50,54	41,36	28,04	24,16	Angulo
. relat. hki 00 111 42 200 21 220 31 220 31 111 00 311 7 222 91 111 16 311 16 311 16 311 16 311 16 311 16 311 16 311 17 222 8 400 8 400 11 111 13 222 8 400 10 4 11 11. 12 222 13 222 14 11. 15 0.0005 66 0.0005 10 54 0.0007 10 52 0.0007 9 534 0.0007 9		1,2	1,7	2,0	1,0	1,2	1,2	1,4	2,0	2,3	a
. hkl 111 200 220 311 220 311 222 311 222 311 222 400 311 222 400 0,005 11 0,005 10 0,005 10 0,000 9 10		42	42	P	43	02	54	66	Ū	66	
		0,000 8	0,002	0,003	0,000 3	0,000 8	9 000,0	0,001	с , ооз	0,005	۵
	2 2	20	1	10	10			10	10		Int. r

Patrón de difre d Int 2,034 10 1,762 1 1,246 2 1,062 4 2 1,017 2	1,062 4 1,017 2	2,410	2,088	1,2	1	1	Bu	A	20	44	0	0	1 0				-	
	1			59	206		ulo	,16	3,04	1,36	0,54	3,67	8,19	28,87	33,78	51,27	55,96	
7 12 20	20 7	91	100 57	16	13		d	2,366	2,05	1,466	1,254	1,202	1,043	2,01		1,742	1,742	1,742 1,242 1,061
att. ASTH de	N 44		N N	()	N	- - -	٩	0,005	0,003		0,001	0,000	0,000 0,000	0,000 0,000	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000
11 NI Y	111 122	200	200	811	22		NG N1/N	na Ni/N	na Ni/N Int.	na Ni/N Int.	Int.	Int.	a Ni/N Int.	a Ni/N	a Ni/N	a Ni/N	a Ni/N	a Ni/N
01N							iO (pur	iO (pur	iO (pur	iO (pur	iO (pur relat.	i0 (pur relat. 10	iO (pur relat. 10	iO (pur relat. 10 9 9	iO (pur relat. 6 10 9 9	iO (pur relat. 6 10 9 9 10	iO (pur relat. 6 10 9 9 10 20	i0 (pu relat. 6 10 9 9 10 20

50

5

and the second se	A	15 C # 6 T 1 C T		
a de la companya de l	Angulo	d	d	Int. relat.
Fase NiO	24,10	2,372	0,005	15
	28,07	2,058	0,003	10
	41,18	1,471	0,001	,5
	50,39 ·	1,257	0,000 9	< 5
i har a la	53,49	1,205	0,000 8	< 5
	. . .	-	-	-
Fase metá-	28,98	1,998	0,003	90
IICU NI	33,76	1,743	0,002	60
	51,27	1,242	0,000 8	.60
	65,80	1,062	0,000 5	100
	72,22	1,017	0,000.3	40
•				

Tabla 6 Patrón de difracción del sínter templado a 1 273 K

Tabla 0 D-1 -.

i coltato -	Angulo	d	d	Int. rela.	
Fase NiO	23,68	2,412	0,005	< 5	ē,
	27,63	2,088	0,003	< 5	ł.
	40,69	1,485	0,0015	< 5	
	49,76	1,269	0,0009	< 5	
	at the second second	'	-		
	С. - С.	-		- -	
ase metálica Ni	28,41	2,036	0,003	100	æ
	33,29	1,764	0,002	30	ŝ
	50,66	1,252	0,0008	10	
	65,11	1,068	0,0004	8	
	71,61	1,021	0,0003	9	1

Tabla 9 Patrón de difracción del sínter flotado

Tabla 7	7	Patrón	de	difracción	dė1	sinter	templado	a	1	563	1
					•				-		

~	Angulo	d	d	Int. relat.
Fase NiO	24,04	2,377	0,005	< 5
•	28,01	2,062	2,062	< 5
	41,18	1,471	0,001	< 5
	50,24	1,260	0,009	< < 5
	53,53	1,204	0,008	< < 5
8 8	· · ·	-	-	-
Fase metá- lica Ni	28,82	2,010	0,003	100
	33,64	1,748	0,002	30
	51,27	1,241	0,000 8	10
	66,26	1,058	0,000 4	10
	72,36	1,016	0,000 3	3 < 5

	Angulo	d	d	Int.	rela
Fase NiO	23,86	2,394	0,005		5
	27,80	2,076	0,003	· · · · · · · · · · · · · · · · · · ·	5
	41,14	1,472	0,001		5
x	·	-	-		- '
	53,57	1,204	0,0008	< <	5
	, * , *	-	· · · ·		-
ase metá- ica Ni	28,71	2,01	0,003	ī	ōō
5 B.	33,46	1,757	0,002		50
	51,19	1,243	0,0008		45
	65,59	1,064	0,0005		30
· · · ·	72,20	1,017	0,0003		20

Para la muestra templada a 1 633 K prácticamente la fase de NiO desaparece. Un comportamiento similar ocurre con la muestra templada a 1 563 K, donde también desaparece la fase de NiO. Por el contrario la muestra templada 1 273 K presenta un cuadro diferente, aqui aparecen más nítidas las líneas fundamentales correspondientes al NiO.

Tal y como era de esperar en la muestra del sínter flotado desaparecen prácticamente las líneas correspondientes a la fase de NiO, lo que demuestra la eficacia del proceso de separación de la parte metálica de la del NiO por el proceso de flotación.

- La muestra de la mezcla de Ni - NiO templado a 1 523 K, que se preparó con Ni carbonilico P.A. y NiO proveniente de la calcinación del carbonato básico de níquel purificado (libre de sulfatos) revela la presencia de ambas fases tanto del Ni como la del NiO.

La desaparición casi completa del patrón de difracción del NiO para las muestras templadas a 1 533 y 1 633 K no es explicable por una reducción de esta fase debido a la presencia de un agente reductor en el equipo de templado (figura 2), que de hecho no existe y que de existir, en 'consecuencia debia aumentar la intensidad relativa de las líneas correspondientes al patrón de difracción del Ni en el sínter, sin embargo estas últimas más bien disminuyen un poco por lo que se descarta dicha posibilidad.

Teniendo en cuenta los resultados de TRP se infiere que este fenómeno es sólo explicable por un proceso de disolución mutua entre el Ni y el NiO, con la posterior disorción del oxígeno.

En los resultados fotográficos se obtuvieron otras líneas muy poco intensas que no correspondian a ninguna de las fases presentes en el sínter, y se comprobó que eran procedentes de los patrones de difracción del Ni y NiO con la radiación K_{fi} del Fe.

CONCLUSIONES

1

- Se demuestra que existe un contenido relativamente alto de oxígeno disuelto en la fase metálica del sínter, la cual esta compuesta por el Ni ý sus impurezas.
- 2. Los difractogramas de las muestras estudiadas a 1 273, 1 523 y 1 633 K dan una idea exacta de como desaparece la fase de NiO durante la reacción, al estado sólido entre esta fase y la del Ni metálico, dando lugar a la disolución del oxígeno en esta última.
- 3. Se observó la desaparición del primer efecto (oxígeno disuelto) a partir de 1 563 K tal y como lo muestran los termogramas de TRP, lo cual fortalece el criterio de la disorción del oxígeno a partir de esta temperatura.

REFERENCIAS

54

- BOSCH, H. y OTROS: "Factors influencing the temperature-pro grammed reduction profiles of vanadium pentoxide". Journal <u>Chemical Society</u>. Faraday Trans. Vol. 80, No. 1, p. 2479-2488, 1984.
- 2 .. CHIEN, S. ; HASIAN-WEN HUANG and KUANG-LIEHLU: "Temperature programmed reduction profiles for suported iron, nickel and bimetallic catalysts". <u>Bulleting Int. Chemical</u>. Academia Sinica. Vol. 32, p. 9-17, 1985.
- 3. DAMIANI, D.; E. D. PEREZ M. and A. J. ROUCO: "SiO suported Ru-Cu catalysts: A TRP study". <u>Journal</u> of <u>catalysts</u>. Vol. 101, p. 162-168, 1986.

- 4. GENTRY, S. ; N. W. HURST and A. JONES: "Study of the promoting of transition metals on the reduction of cupric oxide by temperature programmed reduction". Journal of the <u>Chemical Society</u>. Faraday Transactions. Vol. 77, No. 1, p. 603-619, 1981.
- 5. GENTRY, S.; N. W. HURST and A. JONES: "Temperature programmed reduction of cooper ions in zeolites". Journal of the <u>Chemical Society</u>. Faraday Transactions, Vol. 75, No. 1, p. 1688-1699, 1979.
- 6 HURST, N.; S. J. GENTRY and A. JONES: "Temperature program med". <u>Cat. Rev. Sci. Eng</u>. Vol. 24, No. 2, p. 233-309, 1982.
- 7 . KYNKOWSKI, J. : "Temperatureprogrammed reduction (TRP) of Co-Ni/Al₂O, catalysts". <u>React.</u> <u>kinet. Catal. Lett</u>., Vol. 30, No. 1, p. 33-39, 1986.

- LLOPIZ, J. C. y OTROS: "Contribución a la normación del consumo de antracita en la producción del sínter de Nicaro por medio de celdas con electrolitos sólidos del tipo 0,85 ZrO₂ - 0,15 CaO. <u>Minería</u> y <u>Geología</u>. No. 2, p. 105-112, 1985.
- 9. ROBERTSON, 5. D. y OTROS: "Determination of reducibility and identification of alloying in cooper-nickel on silica catalysts by temperature programmed reduction". Journal of <u>Gatalysts</u>. p. 242-431, 1975.
- SHEDRIN, B. M. y OTROS: <u>Disocia</u> <u>ción térmica de los</u>. <u>óxidos de</u> <u>níquel</u>. Nosců, Academia de Ciencias de la URSS, 1973.
- 11. WINNERS, O. J.; P. ARNOLD and J. A. NOULIJN: "Determination of the reduction mechanism by the temperature-programmed reduction: Application to small Fe₂O₃ particles". Journal of Physical Chemistry. Vol. 90, p. 1331-1337, 1986.