Evaluación de arcillas caoliníticas de Moa para la producción de cemento de base clínquer–arcilla calcinada–caliza (LC3)
Resumen
Palabras clave
Texto completo:
PDFReferencias
ALUJAS, A.; FERNÁNDEZ, R.; QUINTANA, R.; SCRIVENER, K. L. & MARTIRENA, F. 2015a: Pozzolanic reactivity of low grade kaolinitic clays : Influence of calcination temperature and impact of calcination products on OPC hydration. Applied Clay Science 108: 94–101.
ALUJAS, A.; ALMENARES, R. S.; BETANCOURT, S. & LEYVA, C. 2015b: Pozzolanic Reactivity of Low Grade Kaolinitic Clays: Influence of Mineralogical Composition. In: K. SCRIVENER & A. FAVIER (editors). Calcined Clays for Sustainable Concrete RILEM Book. Springer Netherlands, Lausanne, p. 339–345.
APARICIO, P. & GALAN, E. 1999: Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay minerals 47(1): 12–27.
AVET, F.; SNELLINGS, R.; ALUJAS, A.; BEN, M. & SCRIVENER, K. 2016: Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research 85: 1–11.
BICH, C.; AMBROISE, J. & PÉRA, J. 2009: Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science 44(3): 194–200.
BRINDLEY, G. W. & NAKAHIRA, M. 1959a: The Kaolinite-Mullite Reaction Series: II, Metakaolin. Journal of the American Ceramic Society 42(7): 314–318.
BRINDLEY, G. W. & NAKAHIRA, M. 1959b: The Kaolinite-Mullite Reaction Series: III, The High-Temperature Phases. Journal of the American Ceramic Society 42(7): 319–324.
CASTILLO, R.; FERNÁNDEZ, R.; ANTONI, M.; SCRIVENER, K.; ALUJAS, A. & MARTIRENA, J. F. 2010: Activación de arcillas de bajo grado a altas temperaturas. Revista Ingeniería de Construcción 25(3): 329–352.
FERNÁNDEZ, R.; MARTIRENA, F. & SCRIVENER, K. L. 2011: The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research 41(1): 113–122.
FÖLDVÁRI, M. 2011: Handbook of thermogravimetric system of minerals and its use in geological practice.
GARG, N. & SKIBSTED, J. 2014: Thermal Activation of a Pure Montmorillonite Clay and Its Reactivity in Cementitious Systems. The Journal of Physical Chemistry C 118(21): 11464-11477.
HABERT, G.; CHOUPAY, N.; ESCADEILLAS, G.; GUILLAUME, D. & MONTEL, J. M. 2009: Clay content of argillites : Influence on cement based mortars. Applied Clay Science 43(3): 322–330.
HE, C.; MAKOVICKY, E. & OSBACK, B. 1994: Thermal stability and pozzolanic activity of calcined kaolin. Applied Clay Science 9(3): 165–187.
HE, C.; OSBAECK, B. & MAKOVICKY, E. 1995: Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects. Cement and Concrete Research 25(8): 1691–1702.
HE, H.; YUAN, P.; GUO, J.; ZHU, J. & HU, C. 2005: The influence of random defect density on the thermal stability of kaolinites. Journal of the American Ceramic Society 88(4): 1017–1019.
JUENGER, M. C. G.; PROVIS, J. L.; ELSEN, J.; MATTHES, W.; HOOTON, R. D.; DUCHESNE, J.; COURARD, L.; HE, H.; MICHEL, F.; SNELLINGS, R. & DE BELIE, N. 2012: Supplementary cementitious materials for concrete: characterization needs. Mater. Res. Soc. Symp. Proc. 1–15.
LOTHENBACH, B.; SCRIVENER, K. & HOOTON, R. D. 2011: Supplementary cementitious materials. Cement and Concrete Research 41(12): 1244–1256.
MURAT, M. & COMEL, C. 1983: Hydration reaction and hardening of calcined clays and related minerals III. Influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite. Cement and Concrete Research 13(5): 631–637.
NC/CTN22. 2013: NC 506 Cemento hidráulico. Método de ensayo. Determinación de la resistencia mecánica. Oficina Nacional de Normalización, La Habana, Cuba.
NC/CTN22. 2011: NC 95 Cemento Portland. Especificaciones. Oficina Nacional de Normalización, La Habana, Cuba.
NJILA, T. & DÍAZ-MARTÍNEZ, R. 2016: Estudio químico-mineralógico de los perfiles lateríticos ferrosialíticos en los sectores Téneme, Farallones y Cayo Guam en el noreste de Cuba. Revista Geológica de América Central 54: 67–83.
NJILA, T.; DÍAZ, R.; OROZCO, G. & ROJAS, L. A. 2010a: Un acercamiento a las cortezas de meteorización no niquelíferas del nordeste de Cuba. Minería y Geología 26(2): 14–34.
NJILA, T.; DÍAZ, R.; PROENZA, J. & OROZCO, G. 2010b: Evaluación mineralógica semi-cuantitativa de las cortezas de meteorización no niquelíferas en la región nororiental de Cuba. Minería y Geología 26(4): 1–15.
POLL, L.; ALMENARES, R. S.; ROMERO, Y.; ALUJAS, A.; LEYVA, C. A. & MARTIRENA, J. F. 2016: Evaluación de la actividad puzolánica del material arcilloso del depósito La Delta Moa, Cuba. Minería y Geología 32(1): 15–27.
PONS, J. & LEYVA, C. 1996: Empleo de las arcillas ferrocaoliníticas–gibbsíticas de la región de Moa en los talleres de fundición. Minería y Geología 13: 93–97.
PONS, J.; PÉREZ, O.; RAMÍREZ, B. & RAMÍREZ, M. 1997: Caracterización de las arcillas refractarias de la zona de Cayo Guam y su empleo en la fundición. Minería y Geología 14: 19–23.
RUSSELL, J. D. & FRASER, A. R. 2012: Infrared methods. In: M. H. REPACHOLI (editor). Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer Netherlands, p. 11–67.
SABIR, B.; WILD, S. & BAI, J. 2001: Metakaolin and calcined clays as pozzolans for concrete: A review. Cement and Concrete Composites 23(6): 441–454.
SAMET, B.; MNIF, T. & CHAABOUNI, M. 2007: Use of a kaolinitic clay as a pozzolanic material for cements: Formulation of blended cement. Cement and Concrete Composites 29(10): 741–749.
TEKLAY, A.; YIN, C.; ROSENDAHL, L. & BØJER, M. 2014: Calcination of kaolinite clay particles for cement production: A modeling study. Cement and Concrete Research 61–62: 11–19.
TIRONI, A.; TREZZA, M. A.; SCIAN, A. N. & IRASSAR, E. F. 2014: Potential use of Argentine kaolinitic clays as pozzolanic material. Applied Clay Science 101: 468–476.
TOLEDO FILHO, R. D.; GONÇALVES, J. P.; AMERICANO, B. B. & FAIRBAIRN, E. M. R. 2007: Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cement and Concrete Research 37(9): 1357–1365.
VIZCAÍNO, L.; SÁNCHEZ, S.; PÉREZ, A.; DAMAS, S.; SCRIVENER, K. & MARTIRENA, F. 2015: Industrial trial to produce low clinker, low carbon cement. Materiales de Construcción 65(317): e045.
WBCSD/IEA. 2009: Cement Technology Roadmap 2009. Carbon emissions reductions up to 2050. IEA Publications, Paris, 36 p.
YUSIHARNI, B. E. & GILKES, R. 2010: Do heated gibbsite, kaolinite and goethite rehydroxylate? In: 21 St Australian Clay Minerals Conference. Brisbane, Australia, p. 131–134.
Resumen
837
|
PDF
322 |
Copyright (c) 2016 Roger S. Almenares-Reyes, Adrian Alujas-Díaz, Lisandra Poll-Legrá, Pedro R. Bassas-Noa, Sergio Betancourt-Rodríguez, José F. Martirena-Hernández, Carlos A. Leyva-Rodríguez

Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.