Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3 )

Authors

  • Roger S. Almenares-Reyes Departamento de Metalurgia, Instituto Superior Minero Metalúrgico
  • Adrian Alujas-Díaz Universidad Central de Las Villas
  • Lisandra Poll-Legrá Departamento de Metalurgia, Instituto Superior Minero Metalúrgico
  • Pedro R. Bassas-Noa Centro de Investigaciones del Níquel
  • Sergio Betancourt-Rodríguez Universidad Central de Las Villas
  • José F. Martirena-Hernández Universidad Central de Las Villas
  • Carlos A. Leyva-Rodríguez Instituto Superior Minero Metalúrgico de Moa

Keywords:

calcined clays, pozzolanic activity, LC 3 cement, alkaline solubility, cementitious materials.

Abstract

Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (ATG). These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1), although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

Downloads

Download data is not yet available.

Author Biographies

Roger S. Almenares-Reyes, Departamento de Metalurgia, Instituto Superior Minero Metalúrgico

Máster en Metalurgia. Profesor Asistente del Departamento Metalurgia - Química.

Adrian Alujas-Díaz, Universidad Central de Las Villas

Doctor en Ciencias Técnicas. Profesor Auxiliar. Facultad de Química - Farmacia.

Lisandra Poll-Legrá, Departamento de Metalurgia, Instituto Superior Minero Metalúrgico

Máster en Metalurgia. Profesora Instructora del Departamento Metalurgia - Química.

Pedro R. Bassas-Noa, Centro de Investigaciones del Níquel

Máster en Ciencias. Director de la Unidad de Proyectos de Laboratorio.

Sergio Betancourt-Rodríguez, Universidad Central de Las Villas

Doctor en Ciencias Técnicas. Profesor Titular de la Facultad de Construcciones.

José F. Martirena-Hernández, Universidad Central de Las Villas

Doctor en Ciencias. Profesor Titular. Director del Centro de Investigación y Desarrollo de Estructuras y Materiales.

Carlos A. Leyva-Rodríguez, Instituto Superior Minero Metalúrgico de Moa

Doctor en Ciencias Geológicas. Profesor Titular de la Facultad de Geología.

References

ALUJAS, A.; FERNÁNDEZ, R.; QUINTANA, R.; SCRIVENER, K. L. & MARTIRENA, F. 2015a: Pozzolanic reactivity of low grade kaolinitic clays : Influence of calcination temperature and impact of calcination products on OPC hydration. Applied Clay Science 108: 94–101.

ALUJAS, A.; ALMENARES, R. S.; BETANCOURT, S. & LEYVA, C. 2015b: Pozzolanic Reactivity of Low Grade Kaolinitic Clays: Influence of Mineralogical Composition. In: K. SCRIVENER & A. FAVIER (editors). Calcined Clays for Sustainable Concrete RILEM Book. Springer Netherlands, Lausanne, p. 339–345.

APARICIO, P. & GALAN, E. 1999: Mineralogical interference on kaolinite crystallinity index measurements. Clays and Clay minerals 47(1): 12–27.

AVET, F.; SNELLINGS, R.; ALUJAS, A.; BEN, M. & SCRIVENER, K. 2016: Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research 85: 1–11.

BICH, C.; AMBROISE, J. & PÉRA, J. 2009: Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin. Applied Clay Science 44(3): 194–200.

BRINDLEY, G. W. & NAKAHIRA, M. 1959a: The Kaolinite-Mullite Reaction Series: II, Metakaolin. Journal of the American Ceramic Society 42(7): 314–318.

BRINDLEY, G. W. & NAKAHIRA, M. 1959b: The Kaolinite-Mullite Reaction Series: III, The High-Temperature Phases. Journal of the American Ceramic Society 42(7): 319–324.

CASTILLO, R.; FERNÁNDEZ, R.; ANTONI, M.; SCRIVENER, K.; ALUJAS, A. & MARTIRENA, J. F. 2010: Activación de arcillas de bajo grado a altas temperaturas. Revista Ingeniería de Construcción 25(3): 329–352.

FERNÁNDEZ, R.; MARTIRENA, F. & SCRIVENER, K. L. 2011: The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cement and Concrete Research 41(1): 113–122.

FÖLDVÁRI, M. 2011: Handbook of thermogravimetric system of minerals and its use in geological practice.

GARG, N. & SKIBSTED, J. 2014: Thermal Activation of a Pure Montmorillonite Clay and Its Reactivity in Cementitious Systems. The Journal of Physical Chemistry C 118(21): 11464-11477.

HABERT, G.; CHOUPAY, N.; ESCADEILLAS, G.; GUILLAUME, D. & MONTEL, J. M. 2009: Clay content of argillites : Influence on cement based mortars. Applied Clay Science 43(3): 322–330.

HE, C.; MAKOVICKY, E. & OSBACK, B. 1994: Thermal stability and pozzolanic activity of calcined kaolin. Applied Clay Science 9(3): 165–187.

HE, C.; OSBAECK, B. & MAKOVICKY, E. 1995: Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects. Cement and Concrete Research 25(8): 1691–1702.

HE, H.; YUAN, P.; GUO, J.; ZHU, J. & HU, C. 2005: The influence of random defect density on the thermal stability of kaolinites. Journal of the American Ceramic Society 88(4): 1017–1019.

JUENGER, M. C. G.; PROVIS, J. L.; ELSEN, J.; MATTHES, W.; HOOTON, R. D.; DUCHESNE, J.; COURARD, L.; HE, H.; MICHEL, F.; SNELLINGS, R. & DE BELIE, N. 2012: Supplementary cementitious materials for concrete: characterization needs. Mater. Res. Soc. Symp. Proc. 1–15.

LOTHENBACH, B.; SCRIVENER, K. & HOOTON, R. D. 2011: Supplementary cementitious materials. Cement and Concrete Research 41(12): 1244–1256.

MURAT, M. & COMEL, C. 1983: Hydration reaction and hardening of calcined clays and related minerals III. Influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite. Cement and Concrete Research 13(5): 631–637.

NC/CTN22. 2013: NC 506 Cemento hidráulico. Método de ensayo. Determinación de la resistencia mecánica. Oficina Nacional de Normalización, La Habana, Cuba.

NC/CTN22. 2011: NC 95 Cemento Portland. Especificaciones. Oficina Nacional de Normalización, La Habana, Cuba.

NJILA, T. & DÍAZ-MARTÍNEZ, R. 2016: Estudio químico-mineralógico de los perfiles lateríticos ferrosialíticos en los sectores Téneme, Farallones y Cayo Guam en el noreste de Cuba. Revista Geológica de América Central 54: 67–83.

NJILA, T.; DÍAZ, R.; OROZCO, G. & ROJAS, L. A. 2010a: Un acercamiento a las cortezas de meteorización no niquelíferas del nordeste de Cuba. Minería y Geología 26(2): 14–34.

NJILA, T.; DÍAZ, R.; PROENZA, J. & OROZCO, G. 2010b: Evaluación mineralógica semi-cuantitativa de las cortezas de meteorización no niquelíferas en la región nororiental de Cuba. Minería y Geología 26(4): 1–15.

POLL, L.; ALMENARES, R. S.; ROMERO, Y.; ALUJAS, A.; LEYVA, C. A. & MARTIRENA, J. F. 2016: Evaluación de la actividad puzolánica del material arcilloso del depósito La Delta Moa, Cuba. Minería y Geología 32(1): 15–27.

PONS, J. & LEYVA, C. 1996: Empleo de las arcillas ferrocaoliníticas–gibbsíticas de la región de Moa en los talleres de fundición. Minería y Geología 13: 93–97.

PONS, J.; PÉREZ, O.; RAMÍREZ, B. & RAMÍREZ, M. 1997: Caracterización de las arcillas refractarias de la zona de Cayo Guam y su empleo en la fundición. Minería y Geología 14: 19–23.

RUSSELL, J. D. & FRASER, A. R. 2012: Infrared methods. In: M. H. REPACHOLI (editor). Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Springer Netherlands, p. 11–67.

SABIR, B.; WILD, S. & BAI, J. 2001: Metakaolin and calcined clays as pozzolans for concrete: A review. Cement and Concrete Composites 23(6): 441–454.

SAMET, B.; MNIF, T. & CHAABOUNI, M. 2007: Use of a kaolinitic clay as a pozzolanic material for cements: Formulation of blended cement. Cement and Concrete Composites 29(10): 741–749.

TEKLAY, A.; YIN, C.; ROSENDAHL, L. & BØJER, M. 2014: Calcination of kaolinite clay particles for cement production: A modeling study. Cement and Concrete Research 61–62: 11–19.

TIRONI, A.; TREZZA, M. A.; SCIAN, A. N. & IRASSAR, E. F. 2014: Potential use of Argentine kaolinitic clays as pozzolanic material. Applied Clay Science 101: 468–476.

TOLEDO FILHO, R. D.; GONÇALVES, J. P.; AMERICANO, B. B. & FAIRBAIRN, E. M. R. 2007: Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cement and Concrete Research 37(9): 1357–1365.

VIZCAÍNO, L.; SÁNCHEZ, S.; PÉREZ, A.; DAMAS, S.; SCRIVENER, K. & MARTIRENA, F. 2015: Industrial trial to produce low clinker, low carbon cement. Materiales de Construcción 65(317): e045.

WBCSD/IEA. 2009: Cement Technology Roadmap 2009. Carbon emissions reductions up to 2050. IEA Publications, Paris, 36 p.

YUSIHARNI, B. E. & GILKES, R. 2010: Do heated gibbsite, kaolinite and goethite rehydroxylate? In: 21 St Australian Clay Minerals Conference. Brisbane, Australia, p. 131–134.

Published

2016-12-02

How to Cite

Almenares-Reyes, R. S., Alujas-Díaz, A., Poll-Legrá, L., Bassas-Noa, P. R., Betancourt-Rodríguez, S., Martirena-Hernández, J. F., & Leyva-Rodríguez, C. A. (2016). Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3 ). Minería & Geología, 32(4), 63–76. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/art5_No4_2016

Most read articles by the same author(s)

<< < 1 2