Stochastic modeling of ground acceleration for eastern Cuba and the city of Santiago de Cuba

Authors

Keywords:

peak ground acceleration, stochastic modeling, shaking map, spectral acceleration

Abstract

The southeastern region of Cuba is the most seismically dangerous area of the country because of its close location to the border of the Caribbean plate with the North American plate. This paper presents two possible scenarios of strong earthquakes, located about 30 km south of the city of Santiago de Cuba, in terms of peak ground acceleration (PGA) and spectral acceleration (PSA). Acceleration values were calculated for most of the municipalities in the eastern region and for several points in the city of Santiago de Cuba. Two earthquakes of magnitudes 7.0 and 7.3 were modeled, with epicenter in the Oriente fault zone. Necessary parameters were investigated in the calculations such as the stress drop and the attenuation function of the seismic waves. The results indicate significant rock accelerations in the municipalities of Santiago de Cuba and Guamá with values exceeding 180 cm/s2. A shaking map is also obtained for the city of Santiago de Cuba considering the spectral amplification of the soil. The maximum values of spectral acceleration for periods of 0.3 s reach 480 cm/s2.

Downloads

Download data is not yet available.

References

Álvarez, L.; Lindholm, C. y Villalón, M. 2016: Seismic Hazard for Cuba: A New Approach. Bull. Seism. Soc. Am, 107(1): 229-239. doi: 10.1785/0120160074.

Boore, D. M. 2009: Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM. Bull. Seism. Soc. Am., 99: 3202-3216.

Calais, E. y Mercier de Lepinay, B. 1991: From transtension to transpression along the northern Caribbean plate boundary off Cuba: implications for the Recent motion of the Caribbean plate. Tectonophysics, 186: 329-350.

Candia, G.; Macedo, J.; Jaimes, M. A. y Magna, C. 2019: A new State-of-the-Art Platform for Probabilistic and Deterministic Seismic Hazard Assessment. Seismological Research Letters, 90(6): 2262-2275.

Cotilla, M. O. y Córdova, D. 2010a: Notes on three earthquakes in Santiago de Cuba (14.10.1800, 18.09.1826, 07.07.1842). Russian Geology and Geophysics, 51: 228-236

Cotilla, M. O. y Córdova, D. 2010b: The August 20, 1852 earthquake in Santiago de Cuba, Russian Geology and Geophysics, 51: 1227-1246

Cotilla, M. O. 2003: The Santiago de Cuba earthquake of 11 june 1766: Some new insights. Geofísica Internacional, 42(4): 589-602.

D’Amico, M.; Tiberti, M. M.; Russo, E.; Pacor, F. y Basili, R. 2017: Ground‐Motion Variability for Single Site and Single Source through Deterministic Stochastic Method Simulations: Implications for PSHA. Bull. Seism. Soc. Am, 107(2): 966-983. DOI: 10.1785/0120150377.

Havskov, J. y Ottemoller, L. (Eds.) 2008: SEISAN, The earthquake analysis software for Windows, SOLARIS, LINUX and MACKINTOSH Version 8.2. Manual, Department of Earth Science, University of Bergen, Norway.

Moreno, B.; Grandison, M. y Atakan, K. 2002: Crustal velocity model along the southern Cuba margin: implications for the tectonic regime at an active plate boundary. Geophys. J. Int., 151(2): 632–645.

Mase, L. Z. 2020: Seismic Hazard Vulnerability of Bengkulu City, Indonesia, Based on Deterministic Seismic Hazard Analysis. Geotech Geol Eng 38, 5433–5455. DOI: 10.1007/s10706-020-01375-6.

Motazedian, D. y Atkinson G. M. 2005: Stochastic finite-fault modeling based on a dynamic corner frequency. Bull. Seism. Soc. Am., 95: 995-1010.

Rivera, Z. C.; Slejko, D.; Caballero, L. F.; Alvarez, J. L. y Santulin, M. 2015: Soil amplification in Santiago de Cuba. Journal: Atti del 34 Convegno Nazionale del Gruppo Nazionale di Geofisica della Terra Solida. Tema 2: Caratterizzazione sísmica del territorio. ISBN: 978-88-940442-6-3.

Sanò, T. y Pugliese, A. 1991: PSHAKE, Analisi Probabilistica della Propagazione delle Onde Sismiche. Ente per le Nuove Tecnologie, L’Energia e L’Ambiente (ENEA), Direzione Sicurezza e Protezione.

Sanò, T. 1996: BESOIL un programma per il calcolo della propagazione delle onde sismiche. Servizio Sismico Nazionale.

Sharbati, R.; Khoshnoudian, F.; Ramazi, H. R. y Amindavar, H. R. 2018: Stochastic modeling and simulation of ground motions using complex discrete wavelet transform and Gaussian mixture model. Soil Dynamics and Earthquake Engineering, 114: 267-280. DOI: 10.1016/j.soildyn.2018.07.003.

Wells, D. y Coppersmith, K. 1994: New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am., 84: 974-1002.

Zhang, Y.; Romanelli, F.; Vaccari, F.; Peresan, A.; Jiang, C.; Wu, Z.; Gao, S.; Kossobokov, V. G. y Panza, G. F. 2021: Seismic hazard maps based on Neo-deterministic Seismic Hazard Assessment for China Seismic Experimental Site and adjacent areas. Engineering Geology, 291. DOI: 10.1016/j.enggeo.2021.106208.

Published

2023-02-01

How to Cite

Moreno-Toiran, B., Rivera-Alvarez, Z. C., & Sorensen, M. (2023). Stochastic modeling of ground acceleration for eastern Cuba and the city of Santiago de Cuba. Minería & Geología, 38(3), 189–209. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/2103

Most read articles by the same author(s)