Formulation of a didactic strategy for teaching Calculus II

Authors

Keywords:

methodological design, exploratory scope, didactic strategies.

Abstract

In the present work, a didactic strategy is proposed to promote the learning of Calculus II from the study of the previous knowledge that the second-semester students of Engineering in Metallurgy and Materials of the Moa Cuba University possess about the concepts of the series and the D.E. It was raised within the qualitative interpretive approach, studying an educational reality, with an interpretive descriptive design, with an exploratory and descriptive scope that allows the research objective to be met. It presents the previous knowledge in order to interpret it and design the didactic strategy. The results show that, for the resolution of systems of equations, the approach is purely algorithmic. In addition, although there is clarity around the concepts of system and equation, it does not exist when it comes to the interpretation of inequalities. In addition to the above, major deficiencies of an operational nature were evidenced in the arithmetic part and notable products and factorization of polynomials as well as identification of variables and their relationship between them. Based on the results, a didactic strategy was designed, with an analysis and sequencing of content, pedagogical resources and activities that range from an exploratory phase, reinforcement and activation, meaning, application, generation, and transfer of knowledge. 

References

CANTORAL, R. Y FARFÁN, R. (2003). Matemática educativa: una visión de su evolución. Revista latinoamericana de investigación matemática educativa, 6(1), 27-40.

DÍAZ BARRIGA, F., CASTAÑEDA, M. & LULE, M. (1986). Destrezas académicas básicas. México: UNAM.

DÍAZ BARRIGA, F. Y HERNÁNDEZ ROJAS, G. (2010). Estrategias docentes para un aprendizaje significativo, una interpretación constructivista. México: McGraw Hill.

GODINO, J. D. & BATANERO, C. (1994). Significado Institucionl y personal de los objetos matemáticos. Recherches en didactique des Mathématiques, 14(3), 325-355.

HERNÁNDEZ, H. Y OKSANA, K. (2000). La pedagogía tradicional. Tendencias pedagógicas en la realidad educativa actual. La Habana: Editorial Universitaria. p. 90.

JOHNSON, D. W., JOHNSON, R. T. & STANNE, M. B. (2000). Cooperative Learnning methods: A Meta-Analysis. Cooperative Learnning Center at the University of Minnesota. Recuperado de: http://www.clcrc.com/pages/cl-methods.hml.

NEGRETE, J. (2010). Estrategias para el aprendizaje. México: Limusa.

RUBIO GIL, A. Y ÁLVAREZ IRARRETA, A. (2010). Formación de formadores después de Bolonia. Madrid: Ediciones Días de Santos.

SÁNCHEZ MATAMOROS, G., GARCÍA, M. Y LLINARES, S. (2008). La comprensión de la derivada como objeto de investigación en didáctica de la matemática. Revista latinoamericana de investigación matemática educativa, 11(2), 267-296.

UNIVERSIDAD TECNOLÓGICA DE CHILE INACAP. (2017). Manual de Estrategias Didácticas: Orientaciones para su selección. Santiago: Ediciones INACAP.

Published

2022-10-25

How to Cite

Alayo Llorén, J. A., Cutiño Lidanza, M., Galano Quintero, M., Montero Gainza, T., & Lamorú Reyes, A. (2022). Formulation of a didactic strategy for teaching Calculus II. Revista De Innovación Social Y Desarrollo, 7(1), 1–113. Retrieved from https://revista.ismm.edu.cu/index.php/indes/article/view/2203

Issue

Section

Ideas-Soluciones

Most read articles by the same author(s)