Incidencia de los parámetros del proceso de soldadura por fricción agitación en una aleación de aluminio

Autores/as

  • Wilmer Reyes-Feria Empresa Ernesto Che Guevara
  • Tomás Fernández-Columbié Universidad de Moa
  • Luis Hernández-Dorado Empresa Ernesto Che Guevara
  • Marjoris Utria-Jiménez Universidad de Moa
  • Rafael A. Castillo-Diaz Universidad de Moa

Palabras clave:

microestructuras, fricción-agitación, pin cónico, zona termomecánica afectada.

Resumen

Se establecieron las variaciones microestructurales y la dureza en una aleación de aluminio de la serie AA 1050 sometida a proceso de soldadura por fricción agitación. El diseño de la herramienta empleada consistió en una combinación de hombro cóncavo y pin cónico roscado. Las láminas se cortaron perpendiculares, al sentido de laminación, de 180 mm de largo y 80 mm de ancho con un espesor de 5 mm, se unieron en series de dos láminas a lo largo, trazando cordones de soldadura de 170 mm. De una estructura de granos pequeños y una red continua de partículas finas en una matriz de fase α con granos equiaxiales, luego de la soldadura, la zona termomecánica afectada muestra una reorientación, con cierto grado de recristalización y en la zona térmica afectada la presencia de partículas de silicio eutéctico reprecipitados. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ARBEGAST, W. 2003. Constitutive analysis, modeling and simulation, In: JIN, Z.; BEAUDOIN, A.; BIELER, T. A. & RADHAKRISHNAN. B. (editors). Hot deformation of aluminum alloys III. John Wiley & Sons, Warrendale. 313 p.

CARRASCO, J.; BERDUGO, I.; OSPINA, R. & UNFRIED, J. 2013. Optimización del diseño y fabricación de herramienta con pin cónico roscado para soldadura por fricción-agitación. Revista Visión Electrónica 7(2): 135-144.

DICKERSON, T.; SHI, Q. & SHERCLIFF, H. 2003. Heat flow into friction stir welding tools. In: 4th International Symposium on Friction Stir Welding. Park City, Utah, 14-16.

GALLAIS, C.; DENQUIN, A.; BRECHET, Y. & LAPASSET, G. 2008. Precipitation microstructures in an AA6065 aluminum alloy after friction stir welding: Characterization and modelling. Materials Science and Engineering, A 496(21): 77-89.

JATA, K.; SANCARAN, K. & RUSCHAV, J. 2000. Friction stir welding effect on microstructure and fatigue of aluminum alloy 7050 t-7451. Metallurgical and Materials Transactions A, 31A(7): 2181-2192.

LAKSHMINARAYANAN, A.; ANNAMALAI, V. & ELANGOVAN, K. 2015. Identification of optimum friction stir spot welding process parameters controlling the properties of low carbon automotive steel joints. Journal of Materials Research and Technology 4(3): 262-272.

MAHMOUD, T. & KHALIFA, T. 2014. Microstructural and mechanical characteristics of aluminum alloy AA5754 friction stir spot welds. Journal of Materials Engineering and Performance 23(3): 898-905.

MIJAJLOVIĆ, M. 2011. Mathematical model for analytical estimation of generated heat during friction stir welding. Part 1. Journal of Balkan Tribological Association 17(2): 179-191.

MIROSLAV, M.; NENAD, P.; SLOBODAN, J.; DRAGAN, J. & MIODRAG, M. 2012. Experimental studies of parameters affecting the heat generation in friction stir welding process. Thermal Science 16(2): S405-S417.

NANDAN, R.; DEBROY, T. & BHADESHIA, H. 2008. Recent advances in friction stir welding process, weldment structure and properties. Progress in Materials Science 53(20): 980-1023.

PAIDAR, M.; KHODABANDEH, A.; NAJAFI, H. & SABOUR, A. 2014. Effects of the tool rotational speed and shoulder penetration depth on mechanical properties and failure modes of friction stir spot welds of aluminum 2024-T3 Sheets. Journal of Mechanical Science and Technology 28(12): 123-131.

PEEL, M.; STEUWER, A.; PREUSS, M. & WITHERS, P. 2003. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminum AA5083 friction stir welds. Acta Materialia 51(16): 4791-4801.

RAJAMANICKAM, N.; BALUSAMY, V.; REDDY, G. & NATARAJAN, K. 2009. Effect of process parameters on thermal history and mechanical properties of friction stir welds. Mater. Design 30(6): 2726-2731.

RIAHI, M. & NAZARI, H. 2010. Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. Int. J. Advanced Manuf. Technol. 55(15): 143-152.

SATHIYA, P.; ARAVINDAN, S. & NOORUL, A. 2005. Mechanical and metallurgical properties of friction welded AISI 304 austenitic stainless steel [J]. Int J Adv Manufact Technol 26(10): 505-511.

SONG, M. & KOVACEVIC, R. 2003. Thermal modelling of friction stir welding in a moving coordinate system and its validation. Int. J. Machine Tools & Manuf 43(11): 605-615.

STEUWER, A.; PEEL, M. & WITHERS, P. 2006. Dissimilar friction stir welds in 5083-6082: The effect of process parameters on residual stress. Materials Science and Engineering A 441(1-2): 187-196.

SUTTON, M.; REYNOLDS, P.; WANG, D. & HUBBARD, C. 2002. Study of residual stresses and microstructure in 2024-T3 aluminum friction stir butt welds. Journal of Engineering Materials and Technology 124(2): 215-225.

SHI, Q.; DICKERSON, T. & SHERCLIFF, H. 2003. Modelo termo-mecánico por EF de la soldadura por fricción agitación de AL2024 incluyendo la carga axial sobre la herramienta. En: 4to Simposio Internacional de Soldadura por Fricción Agitación.

VELJIĆ, D. 2012. A coupled thermo-mechanical model of friction stir welding. Thermal Science 16(2): 527-534.

Publicado

2019-10-22

Cómo citar

Reyes-Feria, W., Fernández-Columbié, T., Hernández-Dorado, L., Utria-Jiménez, M., & Castillo-Diaz, R. A. (2019). Incidencia de los parámetros del proceso de soldadura por fricción agitación en una aleación de aluminio. Ciencia & Futuro, 9(3), 63–80. Recuperado a partir de https://revista.ismm.edu.cu/index.php/revistacyf/article/view/1833

Número

Sección

Ciencia Universitaria

Artículos más leídos del mismo autor/a

1 2 3 > >>