Diagrama de estabilidad termodinámico del sistema de flotación cobre/agua/amilxantato

Autores/as

Palabras clave:

diagrama Eh-pH, xantato, amilxantato de cobre, cobre, flotación iónica

Resumen

El propósito del trabajo fue obtener el diagrama de estabilidad termodinámico que caracteriza al sistema de flotación cobre/agua/amilxantato, como parte del fundamento teórico necesario para el análisis del proceso de flotación de iones cobre con el reactivo colector de flotación amilxantato de potasio. A partir del sistema de reacciones químicas fundamentales y con ayuda del sofware Medusa se obtuvo el diagrama Eh-pH en el cual se definen las zonas de estabilidad de las diferentes especies químicas y se establece que en el rango de pH de 4 a 13 coexisten las especies xantogenadas de cobre(I) y (II) cuya relación disminuye con el incremento del pH.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ABRAMOV, A. A. & K. S. E. FORSSBERG. 2005. Chemistry and optimal conditions for copper minerals flotation: Theory and practice. Mineral Processing and Extractive Metallurgy Review 26:77- 143

AGPS. 1995. Sodium ethyl xanthate. 1-64

BASILIO, C.; M. D. PRITZKER & R. H. YOON. 1985. Thermodinamics, electrochemistry and flotation of de calcocite-potassium ethyl xanthate system. 114th AIME Annu. New York, 85-86,

BULATOVIC, S. M. 2007. Handbook of flotation reagents. Chemistry, theory and practice: Flotation of sulfide ores. Elsevier Science & Technology Books, 443 p.

CROZIER, R. D. 1992. Flotation: Theory, reagents and ore testing. 1. Pergamon Press plc, Great Britain, 1-343 p.

DE DONATO, P. et al. 1989a. Stability of the amylxanthate ion as a function of ph: Modelling and comparison with the ethylxanthate ion. International Journal of Mineral Processing 25:1-16

DUDENKOV, S.; L. SHUBOV & L. GLAZUNOV. 1980. Fundamentos de la teoría y la práctica de empleo de reactivos de flotación. p.

FUERSTENAU, D. W. 1999. Advances in flotation technology. SME: Littleton, 3-21 p.

HARRIS, P. J. 1988. Reagents in mineral technology. Marcel Dekker, New York, p.

HARRIS, P. J. & N. P. FILKENSTEIN. 1975. Interactions between sulphide minerals and xanthates, i. The formation of monothiocarbonate at galena and pyrite surfaces. International Journal of Mineral Processing 2:77

HEPEL, T. & A. POMIANOWSKI. 1977. Diagrams of electrochemical equilibria of the system copper-potasium ethylxanthate-water at 25ºc. International Journal of Mineral Processing 4:245- 361

IWASAKI, I. & S. R. B. COOKE. 1958. The decomposition of xanthate in acid solution. Journal of the American Chemical Society 80:285-288

JOLY, H. A.; R. MAJERUS & K. C. WESTAWAY. 2004a. The effect of diethylenetriamine on the formation of Cu2+, Ni2+, and Fe3+ amyl xanthate ion complexes. Minerals Engineering 17:1023-1036

JONES, M. H. & J. T. WOODCOCK. 1986. Dixanthogen determination in flotation liquors by solvent extraction and ultraviolet spectrometry. Analytical Chemistry 58:588-591

JONES, M. H. & J. T. WOODCOCK. 1973. Ultraviolet spectrometry of flotation reagents with special reference to the determination of xanthate in flotation liquors. Chameleon Press Ltd, London, 1- 10 p.

KAKOVSKY, I. 1957. Physicochemical properties of some flotation reagent and their salts with ions of heave iron-ferrous metals. 225-237

KLAUDITZ, W. 1939. The ripening of viscose. Tech - Wise TI:251- 259

LAZARIDIS, N. K. et al. 1992. Dissolved-air flotation of metal ions. Separation Science and Technology 27 (13):743 - 1758

LAZARIDIS, N. K. et al. 2004b. Copper removal from effluents by various separation techniques. Hydrometallurgy 74:149-156

LEJA, J. 1982. Surface chemistry of froth flotation. Plenum, New York, 1-228 p.

MATIS, K. A. & P. MAVROS. 1991. Recovery of metals by ion flotation from dilute aqueous solutions. Separation and Purification Methods 20:1- 48

OBREGÓN, H. 1990. Xantatos en sistemas de flotación. Reacciones fenómenos y mecanismos. 5

POMIANOWSKY, A. & J. LEJA. 1963. Spectrophotometric study of xanthate and dixanthogen solutions. Canadian Journal Chemistry 41:2219- 2230

PUIGDOMENECH, I. 2004. Software equilibrio químico.

RAMÍREZ, B. 2011. Remoción por flotación iónica de iones cobre con amilxantato de potasio. [ISMM]. 120 p.

RAO, S. R. 1971. Xanthates and related compounds. 1. Marcell Dekker, New York, 1-504 p.

SOMASUNDARAN, P. & B. MOUDGIL. 1988. Reagents in minerals technology.

STALIDIS, G. A.; K. A. MATIS & N. K. LAZARIDIS. 1989b. Selective separation of Cu, Zn, and As from solution by flotation techniques. Separation Science and Technology 24 (1):97 - 109

SUN, Z. & W. FORSLING. 1997. The degradation kinetics of ethyl-xanthate as a function of pH in aqueous solution. Minerals Engineering 10 (4):389-400

TIPMAN, R. N. & J. LEJA. 1975. Reactivity of xanthate and dixanthogen in aqueous solution of different pH. Colloid and Polymer Science 253:4- 10

ULLMANN´S. 2002. Xanthates. 423

WOODS, R.; C. A. YOUNG & R. H. YOON. 1990. Ethyl xanthate chemisorption isotherms and Eh-pH diagrams for the copper/water/xanthate and chalcocite/water/xanthate systems. International Journal of Mineral Processing 30:17-33

YOUNG, C. A. 1987. Non stoichiometry of chalcocite en water-xanthate systems. [Virginia Polytechnic Institute and State University]. 296 p.

ZOHIR, N.; B. MUSTAPHA & D. ABD-ELBAKI. 2009. Synthesis and structural characterization of xanthate (kex) in sight of their utilization in the processe of sulphides flotation Journal of Minerals & Materials Characterization & Engineering 8 (6):469-477

Publicado

2015-04-02

Cómo citar

Ramírez-Serrano, B., Otero-Calvis, A., & Coello-Velazquez, A. (2015). Diagrama de estabilidad termodinámico del sistema de flotación cobre/agua/amilxantato. Minería Y Geología, 31(1), 67–79. Recuperado a partir de https://revista.ismm.edu.cu/index.php/revistamg/article/view/1017

Número

Sección

Metalurgia extractiva

Artículos más leídos del mismo autor/a