Thermodynamic stability diagram for the copper/water/amylxanthate floatation system

Authors

Keywords:

Eh-pH diagram, xanthate, copper amylxanthate, copper, ionic flotation.

Abstract

The objective of the investigation was to develop a thermodynamic stability diagram which characterizes the copper/water/amylxanthate flotation system as part of the theoretical fundamentation needed to analyze the copper ions flotation process using potassium amylxanthate as flotation collector reagent. Using the main chemical reactions of the system and with the assistance of the Medusa software the Eh-pH diagram was obtained in which the stability zones were defined for the different chemical species in order to analyze the flotation process of copper ions with amylxanthate collector reagent. It was established that thexantogenated species of cupper (I) and (II) co-exist within the pH range of 4 to 13. This ratio decreases as the pH increases.

Downloads

Download data is not yet available.

References

ABRAMOV, A. A. & K. S. E. FORSSBERG. 2005. Chemistry and optimal conditions for copper minerals flotation: Theory and practice. Mineral Processing and Extractive Metallurgy Review 26:77- 143

AGPS. 1995. Sodium ethyl xanthate. 1-64

BASILIO, C.; M. D. PRITZKER & R. H. YOON. 1985. Thermodinamics, electrochemistry and flotation of de calcocite-potassium ethyl xanthate system. 114th AIME Annu. New York, 85-86,

BULATOVIC, S. M. 2007. Handbook of flotation reagents. Chemistry, theory and practice: Flotation of sulfide ores. Elsevier Science & Technology Books, 443 p.

CROZIER, R. D. 1992. Flotation: Theory, reagents and ore testing. 1. Pergamon Press plc, Great Britain, 1-343 p.

DE DONATO, P. et al. 1989a. Stability of the amylxanthate ion as a function of ph: Modelling and comparison with the ethylxanthate ion. International Journal of Mineral Processing 25:1-16

DUDENKOV, S.; L. SHUBOV & L. GLAZUNOV. 1980. Fundamentos de la teoría y la práctica de empleo de reactivos de flotación. p.

FUERSTENAU, D. W. 1999. Advances in flotation technology. SME: Littleton, 3-21 p.

HARRIS, P. J. 1988. Reagents in mineral technology. Marcel Dekker, New York, p.

HARRIS, P. J. & N. P. FILKENSTEIN. 1975. Interactions between sulphide minerals and xanthates, i. The formation of monothiocarbonate at galena and pyrite surfaces. International Journal of Mineral Processing 2:77

HEPEL, T. & A. POMIANOWSKI. 1977. Diagrams of electrochemical equilibria of the system copper-potasium ethylxanthate-water at 25ºc. International Journal of Mineral Processing 4:245- 361

IWASAKI, I. & S. R. B. COOKE. 1958. The decomposition of xanthate in acid solution. Journal of the American Chemical Society 80:285-288

JOLY, H. A.; R. MAJERUS & K. C. WESTAWAY. 2004a. The effect of diethylenetriamine on the formation of Cu2+, Ni2+, and Fe3+ amyl xanthate ion complexes. Minerals Engineering 17:1023-1036

JONES, M. H. & J. T. WOODCOCK. 1986. Dixanthogen determination in flotation liquors by solvent extraction and ultraviolet spectrometry. Analytical Chemistry 58:588-591

JONES, M. H. & J. T. WOODCOCK. 1973. Ultraviolet spectrometry of flotation reagents with special reference to the determination of xanthate in flotation liquors. Chameleon Press Ltd, London, 1- 10 p.

KAKOVSKY, I. 1957. Physicochemical properties of some flotation reagent and their salts with ions of heave iron-ferrous metals. 225-237

KLAUDITZ, W. 1939. The ripening of viscose. Tech - Wise TI:251- 259

LAZARIDIS, N. K. et al. 1992. Dissolved-air flotation of metal ions. Separation Science and Technology 27 (13):743 - 1758

LAZARIDIS, N. K. et al. 2004b. Copper removal from effluents by various separation techniques. Hydrometallurgy 74:149-156

LEJA, J. 1982. Surface chemistry of froth flotation. Plenum, New York, 1-228 p.

MATIS, K. A. & P. MAVROS. 1991. Recovery of metals by ion flotation from dilute aqueous solutions. Separation and Purification Methods 20:1- 48

OBREGÓN, H. 1990. Xantatos en sistemas de flotación. Reacciones fenómenos y mecanismos. 5

POMIANOWSKY, A. & J. LEJA. 1963. Spectrophotometric study of xanthate and dixanthogen solutions. Canadian Journal Chemistry 41:2219- 2230

PUIGDOMENECH, I. 2004. Software equilibrio químico.

RAMÍREZ, B. 2011. Remoción por flotación iónica de iones cobre con amilxantato de potasio. [ISMM]. 120 p.

RAO, S. R. 1971. Xanthates and related compounds. 1. Marcell Dekker, New York, 1-504 p.

SOMASUNDARAN, P. & B. MOUDGIL. 1988. Reagents in minerals technology.

STALIDIS, G. A.; K. A. MATIS & N. K. LAZARIDIS. 1989b. Selective separation of Cu, Zn, and As from solution by flotation techniques. Separation Science and Technology 24 (1):97 - 109

SUN, Z. & W. FORSLING. 1997. The degradation kinetics of ethyl-xanthate as a function of pH in aqueous solution. Minerals Engineering 10 (4):389-400

TIPMAN, R. N. & J. LEJA. 1975. Reactivity of xanthate and dixanthogen in aqueous solution of different pH. Colloid and Polymer Science 253:4- 10

ULLMANN´S. 2002. Xanthates. 423

WOODS, R.; C. A. YOUNG & R. H. YOON. 1990. Ethyl xanthate chemisorption isotherms and Eh-pH diagrams for the copper/water/xanthate and chalcocite/water/xanthate systems. International Journal of Mineral Processing 30:17-33

YOUNG, C. A. 1987. Non stoichiometry of chalcocite en water-xanthate systems. [Virginia Polytechnic Institute and State University]. 296 p.

ZOHIR, N.; B. MUSTAPHA & D. ABD-ELBAKI. 2009. Synthesis and structural characterization of xanthate (kex) in sight of their utilization in the processe of sulphides flotation Journal of Minerals & Materials Characterization & Engineering 8 (6):469-477

Published

2015-04-02

How to Cite

Ramírez-Serrano, B., Otero-Calvis, A., & Coello-Velazquez, A. (2015). Thermodynamic stability diagram for the copper/water/amylxanthate floatation system. Minería & Geología, 31(1), 67–79. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/1017

Issue

Section

Metalurgia extractiva

Most read articles by the same author(s)