Simultaneous Production of Ferromanganese and Abrasive Materials by Applying Alumina Thermal Reduction using Pyrolusite without Previous Roasting and Industrial Solid Wastes

Authors

  • Lorenzo Perdomo-González Universidad Central de Las Villas
  • Rafael Quintana-Puchol Universidad Central de Las Villas
  • Carlos R. Gómez-Pérez Universidad Central de Las Villas
  • Amado Cruz-Crespo Universidad Central de Las Villas

Keywords:

aluminathermic, pyrolusite, ferromanganese, slag, abrasive material

Abstract

Based on the chemical composition of the manganese mineral, aluminum shaving and laminated rolled scale, a strategy is proposed to simultaneously produce ferromanganese and galaxite (abrasive material) through the application of aluminathermic reduction. The feasibility analysis of the aluminathermic process, bypassing the roasting stage of the pyrolusitic mineral, is carried out by assessing the enthalpies of the reaction of the pyrometallurgical mixtures. The feasibility evaluation of the technological process is completed both at lab scale and experimental pilot plant. Alloys for industrial use with over 60% manganese and less than 0,1% carbon were obtained in both cases. The chemical characterization of the slag will ensure that it can be used as abrasive material.

Downloads

Download data is not yet available.

Author Biography

Lorenzo Perdomo-González, Universidad Central de Las Villas

Investigador centro de investigaciones de soldadura Universidad Central de Las Villas

References

PERRY, R. & GREEN, D. 1999: Perry's chemical engineers' handbook. McGraw-hill, New York.

EISSA, M.; EL-FAWAKHRY, K.; MISHREKY, M. & EL-FARAMAWAY, H. 2010: The aluminothermic production of extra low carbón ferrochromium from low grade chromite ore. The Twelfth International Ferroalloys Congress Sustainable Future. June 6–9. Helsinki, Finland.

WANG, L.; MUNIR, A. & MAXIMMOX, M. 1993: Review Termite reactions: their utilization in the synthesis and processing of materials. Journal of Materials Science 28: 3 693-3 708.

DE ALEANCAR, J. & PEREIRA, A. 2007: Diagramas de Ellingham e de Van’t Hoff: Algumas considerações. Quím. Nova. 30(2): 501-504.

CHALMERS, B. 1968: Metalurgia física. Ed. Aguilar, Madrid, 423 p.

MITCHELL, B. 2004: Thermodynamics of Condensed Phases. Chapter 2. En: Mitchell, B. (Autor) An introduction to materials engineering and science for chemical and materials engineers. John Wiley & Sons, Inc., Hoboken, New Jersey, 179-183.

CRUZ, A. 2001: Obtención, mediante fusión, de un fundente fundido del sistema MnO-SiO2 para la soldadura por arco sumergido. Rafael Quintana Puchol (Tutor). Tesis doctoral. Instituto Superior Minero Metalúrgico, 158 p.

ARANGURENT, F. & MALLOL, A. 1963: Siderurgia. Ed. Dorssat S. A., Madrid, 617 p.

RISS, A. 1975: Production of ferroalloys. Ed. Foreign languages publishing house, Moscow, 278 p.

BHOI, B.; MURTHY, B.; DATTA, P. & JOUHARI, A. 1996: Studies on aluminothermic reduction of manganese ore for ferro-manganese making. Proceeding: Ferroalloys industries in the liberalized economy. Editors A. K. Vais; S. D. Sing.; N. G. Goswami & P. Ramachandrarao, p. 66-70.

KACHIK, R. 1985: Aluminothermic Reduction reaction mixture. United States, Patent 4536237.

ENRÍQUEZ, J.; TREMPS, E.; DE ELIO, S. & FERNÁNDEZ, D. 2009: Monografías sobre Tecnología del Acero. Parte I Acería Eléctrica. Universidad Politécnica de Madrid, nov 2009, 230 p.

VYANKATESH METALS & ALLOYS PVT. LTD. 2014: Products-Ferro Manganese. Extra Low Carbon Ferro Manganese. Disponible en: http://www.vyankateshmetals.com/FerroManganese.html

ASTM. 1999: International Standard Specification for ferromanganese. Designation A 99-03.

ASTM. 2000: International Standard Specification for silicomanganese. Designation A 483-64.

SICRE-ARTALEJO, J.; CAMPOS, M.; TORRALBA, J. M.; ZBIRAL, J.; DANNINGER, H. & PENA, P. 2008: Estudio de la degradación de elementos refractarios de alúmina en la sinterización de aceros modificados con Mn. Boletín de la Sociedad Española de Cerámica y Vidrio 47(5): 305-310.

ROGHANI, G.; JAK, E. & HAYES, P. 2002: Phase Equilibrium Studies in the MnO-Al2O3-SiO2 System. Metallurgical and Materials Transactions B. 33(6): 827-838.

JUNG, I. H.; KANG, Y. B.; DECTEROV, S. A. & PELTON, A. D. 2004: Thermodynamic evaluation and optimization of the MnO-Al2O3 and MnO-Al2O3-SiO2 systems and applications to inclusion engineering. Metallurgical and Materials Transactions B 35(2): 259-268.

PEREPELITSYN, V. A.; RYTVIN, V. M.; KORMINA, I. V. & IGNATENKO, V. G. 2006: Composition and properties of the main types of aluminothermic slag at the Klyuchi Ferroalloy Works. Refractories and Industrial Ceramics 47(5): 264-268.

Published

2015-06-20

How to Cite

Perdomo-González, L., Quintana-Puchol, R., Gómez-Pérez, C. R., & Cruz-Crespo, A. (2015). Simultaneous Production of Ferromanganese and Abrasive Materials by Applying Alumina Thermal Reduction using Pyrolusite without Previous Roasting and Industrial Solid Wastes. Minería & Geología, 31(2), 95–112. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/1010

Issue

Section

Metalurgia física

Most read articles by the same author(s)

<< < 1 2 3 4