Silicate profiles characterization in lateritic nickel deposit of Punta Gorda, Moa, Cuba
Keywords:
ferrous, nickeliferous laterites, nickel ores, weathering crusts, Punta Gorda deposit, kaolinite, chlorites, smectite, goethite, smectitesAbstract
Although the lateritic profiles of Punta Gorda deposit, Moa municipality have been classified as oxidized, studies related to the quality of nickel ore have revealed within the deposit, sectors with clayey and smectite type profiles. This prompted the mineralogical characterization of the saprolitic horizons of the lateritic profiles in the O-48 block of the deposit, with X-ray diffraction and ICP-AES spectroscopy techniques. Lateritic profiles constituted by clay horizons (with predominance of kaolinite) associated with smectitic-chloritic horizons were distinguished. Smectite are Fe- saponite and montmorillonite type and the chlorites of the clinochlorite type, enriched in Fe. The paragenesis of the smectite (Sm)-chloritic (Chl) component is interpreted as a process of progressive weathering from Sm to Chl. In the O-48 sector of the Punta Gorda deposit, the smectitic-chloritic saprolite are the carriers of highest amount of nickel, with contents from 1.07 % to 1.59 % NiO, while the kaolinite ones are poor in this metal (less than 0.69 % NiO).Downloads
References
Aiglsperger, T., Proenza, J. A., Lewis, J. F., Labrador, M., Svotjka, M., Rojas-Purón, A., Longo, F., & Ďurišová, J. (2016). Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geology Reviews, 73, 127-147. https://doi.org/10.1016/j.oregeorev.2015.10.010.
Altschuler, Z. S., Dwornik, E. J., & Kramer, J. (1963). Transformation of montmorillonite to kaolinite during weathering. Science, 141: 148–152.
Aquino, K. A., Arcilla, C. A., Schardt, C., & Tupaz, C. A. J. (2022). Mineralogical and Geochemical Characterization of the Sta. Cruz Nickel Laterite Deposit, Zambales, Philippines. Minerals 2022, 12, 305. https://doi.org/10.3390/min12030305.
Beaufort, D., Baronnet, A., Lanson, B., & Meunier, A. (1997). Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France). American Mineralogist, 82, 109-124.
Besnus, Y., Fusil, G., Janot, C., Pinta, M. & Sieffermann, G. (1975). Characteristics of some weathering products of chromatic ultrabasic rocks in Bahia State, Brazil: nontronites, chlorites and chromiferous talc. In: Proceedings of the International Clay Conference (Mexico), pp. 27–34. Applied Publishing, Illinois.
Brand, N. W., Butt, C. R. M., & Elias, M. (1998). Nickel laterites: classification and features. AGSO J Australian Geol Geoph, 17, 81–88.
Butt, C. R. M., & Cluzel, D. (2013). Nickel laterite ore deposits: Weathered serpentinites. Elements, 9, 123–128.
Camuti, K. S. & Riel, R. G. (1996). Mineralogy of the Murrin Murrin nickel laterites. In: Grimsey E. J. & Neuss I. eds. Nickel ‘96, Mineral to Market, pp. 209–210. Australasian Institute of Mining and Metallurgy Special Publication 6/96.
Colin, F., Noack, Y., Trescases, J. J. & Nahon, D. (1985). L’alte´ration late´ritique de´butante des pyroxe´nites de Jacuba, Niquelandia (Bresil). Clay Minerals, 20, 93–113.
Degen, T., Sadki, M., Bron, E., König, U., & Nénert, G. (2014). The HighScoresuite. PowderDiffr, 29, S13–S18.
Domenech, C., Galı, S., Villanova-de Benavent, C., Soler, J. M., & Proenza, J. A. (2017). Reactive transport model of the formation of oxide-type ni-laterite profiles (Punta Gorda, Moa Bay, Cuba). Mineralium Deposita, 52(7), 993-1010.
Elert, K., Pardo, E. N., Rodriguez-Navarro, C. (2015). Mineralogical evolution of di- and trioctahedral smectites in highly alkaline environments. Clays and Clay Minerals, 63(6), 414–431.
Elias, M. (2002). Nickel laterite deposits – a geological overview, resources and exploitation. Centre for Ore Deposit Research, University of Tasmania, Hobart, Special Publication 4, pp 205-220.
Fernández-Martínez, L. (2020). Modelo de la distribución espacial del material amenífero en la base minera de la Empresa del Níquel Ernesto Che Guevara. Tesis Doctoral de la Universidad de Moa, Departamento de Geología. 100 p.
Freyssinet, P., Butt, C.R.M., Morris R.C., Piantone, P. (2005) Ore-forming processes related to lateritic weathering. In: Hedenquist JW, Thomson JFH, Goldfarb RJ, Richards JP (eds), Economic Geology 100th Anniversary Volume, 681-722.
Galí, S., Proenza, J. A., Labrador, M., Melgarejo, J. C., Tauler, E., Muñoz-Gómez, N., Rojas-Purón, A., & Orozco-Melgar, O. (2006). Caracterización mineralógica de los perfiles laterítico tipo óxido: yacimiento Punta Gorda (Cuba Oriental). Macla, 6, 197-199.
Gaudin, A., Decarreau, A., Noack, Y., & Grauby, O. (2005). Clay mineralogy of the nickel laterite ore developed from serpentinised peridotites at Murrin Murrin, Western Australia. Australian Journal of Earth Sciences, 52, 231-241.
Gleeson, S. A., Butt, C. R. M., & Elias, M. (2003). Nickel laterites: A Review. SEG Newsletter, 54, 11-18.
Ito, A., Otake, T., Maulana, A., Sanematsu, K., Sufriadin, I.A. & Sato, T. (2021). Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulawesi, Indonesia: A mass-balance approach. Resource Geology, 1–28. https://doi.org/10.1111/rge. 12266.
Iturralde-Vinent, M. (1996). Introduction to Cuban geology and geophysics. Ofiolitas y Arcos Volcánicos de Cuba. Miami, Florida. Int. Geol. Correl. Programme, 364, 3–35.
Lavaut-Copa, W. (1998). Tendencias geológicas del intemperismo de las rocas ultramáficas en Cuba oriental. Minería y Geología, 15, 9-16.
Lavaut-Copa, W. (2018). A Geological Classification for the Rocks of Weathering. Petroleum Science and Engineering, New York (USA), 2(1), 1-6. doi: 10.11648/j.pse.20180201.11. ISSN: 2640-4516.
Liu, P., Wei, K., Chen, Z., Yuanzhi, T., Wancang, Z., Yuanfeng, C., Jingong, C., & Junfeng, J. (2020). Hydrothermal synthesis of chlorite from saponite: Mechanisms of smectite-chlorite conversion and influence of Mg2+ and Al3+ supplies. Applied Clay Science, 184, 105357. ISSN 0169-1317.
Marchesi, C., Garrido, C. J., Godard, M., Proenza, J. A., Gervilla, F., & Blanco-Moreno, J. (2006). Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contributions to Mineralogy and Petrology, 151(6), 717-736.
Marsh, E. E. & Anderson, E. D. (2011). Ni–Co laterite deposits. U.S. Geological Survey, Open-File Report 2011, 1259, 1–9.
Meng, J., Xiaoyang, L., Benxian, L., Juncheng, Z., Daqian, H., Jiuhua, C., & Weiguang, S. (2018). Conversion reactions from dioctahedral smectite to trioctahedral chlorite and their structural simulations. Applied Clay Science, 158, 252-263. ISSN 0169-1317. https://doi.org/10.1016/j.clay.
Murakami, T., Sato, T. & Inoue, A. (1999). HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite. American Mineralogist, 84(7-8), 1080-1087. https://doi.org/10.2138/am-1999-7-810
Nahon, D., Colin, F. & Tardy, Y. (1982). Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite. Clay Minerals, 17, 339–348.
Oliveira, S. M. B., de Moya-Partini, C. S., & Enzwelieler, J. (2001). Ochreous laterite: a nickel ore Punta Gorda, Cuba. Journal South American Earth Science, 34, 307–317. https://doi.org/10.1016/j.clay.2019.1053577.
Proenza, J., Melgarejo, J., Gervilla, F., & Solé, J. (1999). Los niveles de gabros bandeados en el macizo ofiolitico Moa-Baracoa (Cuba); gabros característicos de cumulados de ofiolitas de zona de suprasubduccion. Minería y Geología, 16(12), 5-12.
Pushcharovsky, Y. (1988). Mapa geológico de la República de Cuba: Havana, Cuba/Moscow, USSR: Academy of Sciences of Cuba and Academy of Sciences of USSR, scale 1:250 000.
Putzolu, F., Abad, I., Balassone, G., Boni, M., & Mondillo, N. (2020b). Ni-bearing smectites in the Wingellina laterite deposit (Western Australia) at nanoscale: TEM-HRTEM evidences of the formation mechanisms. Applied Clay Science, 196, 105753. ISSN 0169-1317. https://doi.org/10.1016/j.clay.2020.105753.
Putzolu, F., Abad, I., Balassone, G., Boni, M., Cappelletti, P., Graziano, S. F., Maczurad, M., Mondillo, N., Najorka, J., & Santoro, L. (2020a). Parent rock and climatic evolution control on the genesis of Ni-bearing clays in Ni-Co laterites: New inferences from the Wingellina deposit (Western Australia). Ore Geology Reviews, 120.
Rojas-Purón, A., Rômulo-Simões, A., & Orozco-Melgar, G. (2012). Identificación mineralógica de los óxidos de manganeso del yacimiento laterítico Punta Gorda, Moa, Cuba. Minería y Geología, 28(1), 1-26. ISSN 1993 8012.
Terrero-Reynosa, J. (2010). Caracterización geoquímica y mineralógica del cuerpo silicatado en el sector septentrional del yacimiento Punta Gorda, Moa. Tesis de maestría, Instituto Superior Minero Metalúrgico, Moa.
Yang, H. & Shau, Y. (1991). The altered ultramafic nodules from Mafu and Liutsu, Hsinchuhsien, Northern Taiwan with particular reference to the replacement of olivine and bronzite by saponite. Special Publication of the Central Geological Survey, 5, 39–58.
Published
How to Cite
Issue
Section
Copyright (c) 2025 Arturo Luis Rojas-Purón, Rômulo Simões-Angélica, Lázaro Fernández-Martínez, Andres Salazar-Moreno

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Authors retain copyright and guaranteeing the right magazine to be the first publication of the work as licensed under a Creative Commons Attribution-NonCommercial that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors may establish separate supplemental agreements for the exclusive distribution version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional telematic archives or on their websites) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access)