Desarrollo y validación de un modelo mejorado de cálculo de transferencia de calor para tubos rugosos

Authors

Keywords:

Friction factor, equivalent roughness, heat transfer coefficient, average deviation, rough tubes, model

Abstract

Se presenta un método mejorado para el cálculo de la transferencia de calor en el interior de tubos rugosos. El modelo se ha obtenido a partir de una segunda evaluación desarrollada anteriormente por los autores sobre el flujo de fluidos en una sola fase en el interior de tubos rugosos. La correlación propuesta se ha verificado mediante comparación con un total de 1 666 datos experimentales disponibles de 34 fluidos diferentes, entre los que se incluyen aire, gases, agua y líquidos orgánicos. El modelo propuesto cubre un rango de validez para el número de Prandtl que va de 0,65 a 4,52 x 104, valores del número de Reynolds de 2,4 x103 a 8,32 x106, un rango de rugosidad relativa de 5 x10-2 a 2 x10-6 y una relación de viscosidad de 0,0048 a 181,5. El modelo propuesto proporciona una buena correlación para 104≤Re y Re<104, con un error medio del 18,3% para el 70,4% de los datos y del 16,6% para el 74,8% de los datos, respectivamente. El método presenta una concordancia satisfactoria con los datos experimentales en cada intervalo evaluado; por tanto, el modelo puede considerarse suficientemente preciso para su aplicación práctica. Actualmente, en la literatura técnica disponible, se desconoce un método con características similares.

Downloads

Download data is not yet available.

References

Ataei-Dadavi, I.; Chakkingal, M.; Kenjeres, S.; Kleijn, Ch. R. and Tummers, M. J. 2019: Flow and heat transfer measurements in natural convection in coarse-grained porous media. International Journal of Heat and Mass Transfer, 130: 575-584.

Bhatti, M. S. and Shah, R. K. 1987: Turbulent and Transition Flow Convective Heat Transfer in Ducts. Handbook of Single-Phase Convective Heat Transfer. Kakac, S.; Shah, R. K. and Aung, W. (eds.) New York: Wiley-Interscience.

Bae, J. W.; Kim, W. K. and Chung, B. J. 2018: Visualization of natural convection heat transfer inside an inclined circular pipe. International Communications in Heat and Mass Transfer, 92: 15-22.

Bazán, F. S. V.; Bedin, L. and Bozzoli, F. 2016: Numerical estimation of convective heat transfer coefficient through linearization. International Journal of Heat and Mass Transfer, 102: 1230-1244.

Binu, T. V. and Jayanti, S. 2018: Heat transfer enhancement due to internal circulation within a rising fluid drop. Thermal Science and Engineering Progress, 8: 385-396.

Camaraza-Medina, Y.; Cruz-Fonticiella, O. M. and García-Morales, O. F. 2019: New model for heat transfer calculation during fluid flow in single phase inside pipes. Thermal Science and Engineering Progress, 11: 162-166.

Camaraza-Medina, Y.; Mortensen-Carlson, K.; Guha, P.; Rubio-González, A. M.; Cruz-Fonticiella, O. M. and García-Morales, O. F. 2019a: Suggested model for heat transfer calculation during fluid flow in single phase inside pipes (II). International Journal of Heat and Technology, 37(1): 257-266.

Camaraza-Medina, Y.; Sánchez-Escalona, A. A.; Cruz-Fonticiella, O. M.; García-Morales, O. F. 2019b: Method for heat transfer calculation on fluid flow in single-phase inside rough pipes. Thermal Science and Engineering Progress, 14: 100436.

Camaraza-Medina, Y.; Hernandez-Guerrero, A. and Luviano-Ortiz, J. L. 2020: Comparative study on heat transfer calculation in transition and turbulent flow regime inside tubes. Latin American Applied Research, 50(4): 309-314.

Camaraza-Medina, Y.; Hernandez-Guerrero, A.; Luviano-Ortiz, J. L. and Garcia-Morales, O. F. 2020: New improvement model for heat transfer calculation on viscous-gravitational fluid flow inside vertical and inclined tubes. International Journal of Heat and Mass Transfer, 159: 120108.

Cancan, Z.; Dingbiao, W.; Sa, X.; Yong, H. and Xu, P. 2017: Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation. International Journal of Heat and Mass Transfer, 113: 332-341.

Chen, Z. Y.; Cheng, M.; Liao, Q.; Ding, Y. D. and Zhang, J. N. 2019: Experimental investigation on the air-side flow and heat transfer characteristics of 3-D finned tube bundle. International Journal of Heat and Mass Transfer, 131: 506-515.

Gnielinski, V. 2013: On heat transfer in tubes. International

Journal of Heat and Mass Transfer, 63: 134-140. DOI:

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.04.015

Huang, D.; Wu, Z.; Sunden, B. and Li, W. 2016: A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress. Applied Energy, 162: 494-505.

Kumar, R.; Nadda, R.; Kumar, S.; Saboor, S.; Saleel, C. A.; Abbas, M. and Linul, E. 2023: Convective heat transfer enhancement using impingement jets in channels and tubes: A comprehensive review. Alexandria Engineering Journal, 70: 349-376.

Medina, Y. C.; Khandy, N. H.; Fonticiella, O. M. C. and Morales, O. F. G. 2017: Abstract of heat transfer coefficient modelation in single-phase systems inside pipes. Mathematical Modelling of Engineering Problems, 4(3): 126-131.

Medina, Y. C.; Fonticiella, O. M. C. and Morales, O. F. G. 2017: Design and modelation of piping systems by means of use friction factor in the transition turbulent zone. Mathematical Modelling of Engineering Problems, 4(4): 162-167.

Medina, Y. C.; Khandy, N. H.; Carlson, K. M.; Fonticiella, O. M. C. and Morales, O. F. C. 2018: Mathematical modeling of two-phase media heat transfer coefficient in air-cooled condenser systems. International Journal of Heat and Technology, 36(1): 319-324.

Mondal, S. and Field, R. W. 2018: Theoretical analysis of the viscosity correction factor for heat transfer in pipe flow. Chemical Engineering Science, 187: 27-32.

Petukhov, B. S. 1970: Heat transfer and friction in turbulent pipe

flow with variable physical properties. Advances in Heat Transfer, 6:

-564. DOI: https://doi.org/10.1016/S0065-2717(08)70153-9

Rabiee, R.; Desilets, M.; Proulx, P.; Ariana, M. and Julien, M. 2018: Determination of condensation heat transfer inside a horizontal smooth tube. International Journal of Heat and Mass Transfer, 124: 816-828.

Reis, M. C.; Sphaier, L. A.; Alves, L. S. and Cotta, R. M. 2018: Approximate analytical methodology for calculating friction factors in flow through polygonal cross section ducts. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40: 76.

Shankar, V. and Senadheera, S. 2024: Improved empirical convection heat transfer coefficient model to predict flexible pavement layer temperatures. Construction and Building Materials, 411: 134206.

Song, R.; Cui, M. and Liu, J. 2017: A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. International Journal of Heat and Mass Transfer, 115: 695-705.

Thomas, J. A.; DeVincentis, B.; Janz, E. and Turner, B. 2024: A general approach for predicting convective heat transfer coefficients in turbulent systems. International Journal of Heat and Mass Transfer, 220: 124989.

Published

2024-06-30

How to Cite

Camaraza-Medina, Y., Mortensen, M., & Blanco Garcia, yamilka. (2024). Desarrollo y validación de un modelo mejorado de cálculo de transferencia de calor para tubos rugosos. Minería & Geología, 40(1), 25–45. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/2470