Structures of the seam joint of an ASTM A653CS type B steel pipe manufactured by electrical resistance welding

Authors

Keywords:

galvanized steel, electrical resistance welding seam, welded joint

Abstract

The objective was to determine the structures of the zone in the welded joint of an ASTM A653CS Type B galvanized steel pipeline using electrical resistance welding seam. The tube was manufactured from a galvanized steel coil, with 52 mm of external diameter, a 3 mm wall thickness, and 350 mm length. A cross section was made through the joint to determine the structures and hardness. It was determined that the upper cord presents a fine-grained structure, with pearlite in an equiaxial ferritic and coarse-grained ferritic matrix; the inside cord showed a profile of ferrite and pearlite, where ferrite forms a network around and at the grain boundaries of the perlite, associated with the difference in temperatures in both areas. Both cords presented cracks associated with the displacement of the material that reaches the maximum temperature of 1 350 - 1400 °C; the edges of the plate are upset against each other with a hardness between 243 HV and 253 HV.

Downloads

Download data is not yet available.

Author Biography

Tomás Hernaldo Fernández-Columbié, Universidad de Moa

Dr. C. en ciencias e ingeniería de materiales, procesos de manufactura, Profesor Titular del departamento de Ingeniería Mecánica

References

ASTM A53. 2013: Tubería de acero soldada y sin costura, negra y de inmersión en caliente, con recubrimiento de zinc de acuerdo al estándar ASTM A 53/A 53M.

Bhatti, A.; Barsoum, Z.; Murakawa, H. and Barsoum, I. 2015: Influence of thermomechanical material properties of different steel grades on welding residual stresses and angular distortion. Materials and Design, 65 (5): 878-889.

Davydov, A.; Evstratikova, Y.; Shaposhnikov, N. & Klimov, G. 2020: Electric Resistance Welding of Dissimilar Pipe. Materials Science and Engineering, 986: 1-7.

Koide, T.; Kondo, H. and Itadani, S. 2006: Development of high performance ERW pipe for linepipe. JFE Technical Report, 7(1): 27-32.

Lambert, A.; Drillet, J.; Gourgues, A.; Sturel, T. and Pineau, H. 2004: Austenite to bainite phase transformations in the heat-affected zone of a high strength low alloy steel. Acta Materialia, 52(6): 2337-2348.

Li, C.; Wang, Y.; Han, T.; Han, B. and Li, L. 2010. Microstructure and toughness of coarse grain heat-affected zone of domestic X70 pipeline steel during in-service welding. J. Mater. Sci., 46(3): 727-733.

Medina-Mendoza, J.; Méndez-Macías, G. & Herrera-Reyes, N. 2020: Análisis de la resistencia de piezas soldadas por el proceso de resistencia eléctrica. Revista de Ingeniería Eléctrica, 4(12): 1-9.

Modenesi, P.; Marques, P.; Santos, D. 2012: Introdução à Metalurgia da Soldagem. UFMG, Belo Horizonte, p. 209

Nace Tmo-284. 1996: Standard test method, evaluation of pipeline and pressure Vessel Steel for resistance to Hydrogen-Induced Cracking. Houston, Texas.

Sabzi, M.; Mesagh, D.; Kianpour, B.; Ghobeiti, H. and Mesagh, D. 2018: Effect of high frequency electric resistance welding parameters on metallurgical transformations and tensile properties of API X52 microalloy stell welding joint. Arch. Metall. Material., 63(4): 1693-1699.

Scott, P. 1996: The effects of frequency in high frequency welding. Proceedings of the Tube/Pipe Congress 96. Dusseldorf, Germany. April 16-18.

Published

2024-06-30

How to Cite

Morales-Perez, H., Romero-Fernández, A., Fernández-Columbié, T. H., & Guzmán-Romero, E. E. (2024). Structures of the seam joint of an ASTM A653CS type B steel pipe manufactured by electrical resistance welding. Minería & Geología, 40(1), 46–59. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/2508

Most read articles by the same author(s)