Recovering copper soluble by chrysocolla control during flotation process in mining

Authors

Abstract

Associated minerals such as chrysocolla in ores, makes it difficult to extract soluble copper efficiently. This work analyzed samples of mixed copper minerals, varying the doses of reagents in flotation tests to maximize the extraction of soluble copper at La Bonita mining unit, in   Arequipa, Peru. It was found that the lower chrysocolla content, the recovery of soluble copper increases significantly.  Results allow strategies to be established focused on ore selection and mixing for reducing chrysocolla levels, releasing soluble copper minerals and improving their buoyancy.

Downloads

Download data is not yet available.

References

Ahmadi, A., Rezaei, M., & Sadeghieh, S. M. (2021). Interaction effects of flotation reagents for SAG mill reject of copper sulphide ore using response surface methodology. Transactions of Nonferrous Metals Society of China, 31(3), 792-806. https://doi.org/10.1016/S1003-6326(21)65539-5

Cai, J., Su, C., Ma, Y., Yu, X., Peng, R., Li, J., Zhang, X., Fang, J., Shen, P., & Liu, D. (2022). Role of ammonium sulfate in sulfurization flotation of azurite: Inhibiting the formation of copper sulfide colloid and its mechanism. International Journal of Mining Science and Technology, 32(3), 575-584. https://doi.org/10.1016/j.ijmst.2022.01.007

Feng, Q., Yang, W., Wen, S., Wang, H., Zhao, W., & Han, G. (2022). Flotation of copper oxide minerals: A review. International Journal of Mining Science and Technology, 32(6), 1351-1364. https://doi.org/10.1016/j.ijmst.2022.09.011

Flöter, W. (1980). Aufbereitung von Uranerzen und Gewinnung eines verkaufsfähigen Produkts. U Uran, 1-89. 1

Gorlova, O. E., Medyanik, N. L., Mishurina, O. A., & Mullina, E. R. (2021). Mixed-Type Flotation–Hydrometallurgical Processing Technology for Complex Copper-Bearing Ore. Journal of Mining Science, 57(5), 834-841. https://doi.org/10.1134/S1062739121050136/METRICS

Herwer, G., Pineda, S., Javier, P., & Taco, V. (2020). Análisis del control de las principales variables del proceso de flotación del cobre. Universidad Católica San Pablo. https://hdl.handle.net/20.500.12590/16484

Huanacuni, E. R. & Sanca, P. A. P. (2024). Influencia de la seguridad basada en el comportamiento para la prevención de accidentes e incidentes en la unidad minera Agromin La Bonita. (Trabajo de Diploma, Universidad Continental, Perú). https://repositorio.continental.edu.pe/handle/20.500.12394/14719

Legua, F. S. & Acuña, E. J. (2023). Diseño y ejecución de la profundización de un pique de doble compartimento para el incremento de reservas minerales en la Unidad Minera AGROMIN La Bonita S.A.C. (Trabajo de Diploma, Universidad Peruana de Ciencias Aplicadas, UPC). http://hdl.handle.net/10757/670715

Lusambo, M., & Mulenga, F. K. (2018). Empirical model of recovery response of copper sulphide circuit at Kansanshi Mine. Journal of the Southern African Institute of Mining and Metallurgy, 118(11), 1179-1184. https://doi.org/10.17159/2411-9717/2018/v118n11a8

Medyanik, N. L., Chanturia, V. A., & Shadrunova, I. V. (2012). Quantum-chemical method for selection of a collecting agent to recover zinc and copper(II) cations in flotation of mine waste waters. Journal of Mining Science, 48(1), 167-176. https://doi.org/10.1134/S1062739148010182/METRICS

Pereira, L., Kupka, N., Huu-Hoang, D., Michaux, B., Saquran, S., Ebert, D., & Rudolph, M. (2023). On the impact of grinding conditions in the flotation of semi-soluble salt-type mineral-containing ores driven by surface or particle geometry effects? International Journal of Mining Science and Technology, 33(7), 855-872. https://doi.org/10.1016/j.ijmst.2023.03.007

Ryaboy, V. I., & Shepeta, E. D. (2020). Collector for copper-arsenic ore flotation. Mining Science and Technology (Russian Federation), 5(4), 297-306. https://doi.org/10.17073/2500-0632-2020-4-297-306

Sibanda, V., Sipunga, E., Danha, G., & Mamvura, T. A. (2020). Enhancing the flotation recovery of copper minerals in smelter slags from Namibia prior to disposal. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e03135

Wang, H., Wen, S., Han, G., He, Y., & Feng, Q. (2022). Adsorption behavior and mechanism of copper ions in the sulfidization flotation of malachite. International Journal of Mining Science and Technology, 32(4), 897-906. https://doi.org/10.1016/j.ijmst.2022.06.006

Yin, Z., Sun, W., Hu, Y., Zhang, C., Guan, Q., & Wu, K. (2018). Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests. Journal of Cleaner Production, 171, 1039-1048. https://doi.org/10.1016/J.JCLEPRO.2017.10.020

Zhu, X., Cui, T., Li, B., Nie, C. C., Zhang, H., Lyu, X. J., Tao, Y., Qiu, J., Li, L., & Zhang, G. W. (2020). Metal recovery from waste printed circuit boards by flotation technology with non-ionic renewable collector. Journal of Cleaner Production, 255, 120289. https://doi.org/10.1016/J.JCLEPRO.2020.120289

Published

2024-10-25

How to Cite

Diaz-Privat, R. A., Waidhofer-Huaman, P. J., Rojas-Pérez, J., & Tantavilca-Martinez, N. (2024). Recovering copper soluble by chrysocolla control during flotation process in mining . Minería & Geología, 40(3), 204–213. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/2526

Issue

Section

Metalurgia extractiva