Recovering copper soluble by chrysocolla control during flotation process in mining
Abstract
Associated minerals such as chrysocolla in ores, makes it difficult to extract soluble copper efficiently. This work analyzed samples of mixed copper minerals, varying the doses of reagents in flotation tests to maximize the extraction of soluble copper at La Bonita mining unit, in Arequipa, Peru. It was found that the lower chrysocolla content, the recovery of soluble copper increases significantly. Results allow strategies to be established focused on ore selection and mixing for reducing chrysocolla levels, releasing soluble copper minerals and improving their buoyancy.Downloads
References
Ahmadi, A., Rezaei, M., & Sadeghieh, S. M. (2021). Interaction effects of flotation reagents for SAG mill reject of copper sulphide ore using response surface methodology. Transactions of Nonferrous Metals Society of China, 31(3), 792-806. https://doi.org/10.1016/S1003-6326(21)65539-5
Cai, J., Su, C., Ma, Y., Yu, X., Peng, R., Li, J., Zhang, X., Fang, J., Shen, P., & Liu, D. (2022). Role of ammonium sulfate in sulfurization flotation of azurite: Inhibiting the formation of copper sulfide colloid and its mechanism. International Journal of Mining Science and Technology, 32(3), 575-584. https://doi.org/10.1016/j.ijmst.2022.01.007
Feng, Q., Yang, W., Wen, S., Wang, H., Zhao, W., & Han, G. (2022). Flotation of copper oxide minerals: A review. International Journal of Mining Science and Technology, 32(6), 1351-1364. https://doi.org/10.1016/j.ijmst.2022.09.011
Flöter, W. (1980). Aufbereitung von Uranerzen und Gewinnung eines verkaufsfähigen Produkts. U Uran, 1-89. 1
Gorlova, O. E., Medyanik, N. L., Mishurina, O. A., & Mullina, E. R. (2021). Mixed-Type Flotation–Hydrometallurgical Processing Technology for Complex Copper-Bearing Ore. Journal of Mining Science, 57(5), 834-841. https://doi.org/10.1134/S1062739121050136/METRICS
Herwer, G., Pineda, S., Javier, P., & Taco, V. (2020). Análisis del control de las principales variables del proceso de flotación del cobre. Universidad Católica San Pablo. https://hdl.handle.net/20.500.12590/16484
Huanacuni, E. R. & Sanca, P. A. P. (2024). Influencia de la seguridad basada en el comportamiento para la prevención de accidentes e incidentes en la unidad minera Agromin La Bonita. (Trabajo de Diploma, Universidad Continental, Perú). https://repositorio.continental.edu.pe/handle/20.500.12394/14719
Legua, F. S. & Acuña, E. J. (2023). Diseño y ejecución de la profundización de un pique de doble compartimento para el incremento de reservas minerales en la Unidad Minera AGROMIN La Bonita S.A.C. (Trabajo de Diploma, Universidad Peruana de Ciencias Aplicadas, UPC). http://hdl.handle.net/10757/670715
Lusambo, M., & Mulenga, F. K. (2018). Empirical model of recovery response of copper sulphide circuit at Kansanshi Mine. Journal of the Southern African Institute of Mining and Metallurgy, 118(11), 1179-1184. https://doi.org/10.17159/2411-9717/2018/v118n11a8
Medyanik, N. L., Chanturia, V. A., & Shadrunova, I. V. (2012). Quantum-chemical method for selection of a collecting agent to recover zinc and copper(II) cations in flotation of mine waste waters. Journal of Mining Science, 48(1), 167-176. https://doi.org/10.1134/S1062739148010182/METRICS
Pereira, L., Kupka, N., Huu-Hoang, D., Michaux, B., Saquran, S., Ebert, D., & Rudolph, M. (2023). On the impact of grinding conditions in the flotation of semi-soluble salt-type mineral-containing ores driven by surface or particle geometry effects? International Journal of Mining Science and Technology, 33(7), 855-872. https://doi.org/10.1016/j.ijmst.2023.03.007
Ryaboy, V. I., & Shepeta, E. D. (2020). Collector for copper-arsenic ore flotation. Mining Science and Technology (Russian Federation), 5(4), 297-306. https://doi.org/10.17073/2500-0632-2020-4-297-306
Sibanda, V., Sipunga, E., Danha, G., & Mamvura, T. A. (2020). Enhancing the flotation recovery of copper minerals in smelter slags from Namibia prior to disposal. Heliyon, 6(1). https://doi.org/10.1016/j.heliyon.2019.e03135
Wang, H., Wen, S., Han, G., He, Y., & Feng, Q. (2022). Adsorption behavior and mechanism of copper ions in the sulfidization flotation of malachite. International Journal of Mining Science and Technology, 32(4), 897-906. https://doi.org/10.1016/j.ijmst.2022.06.006
Yin, Z., Sun, W., Hu, Y., Zhang, C., Guan, Q., & Wu, K. (2018). Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests. Journal of Cleaner Production, 171, 1039-1048. https://doi.org/10.1016/J.JCLEPRO.2017.10.020
Zhu, X., Cui, T., Li, B., Nie, C. C., Zhang, H., Lyu, X. J., Tao, Y., Qiu, J., Li, L., & Zhang, G. W. (2020). Metal recovery from waste printed circuit boards by flotation technology with non-ionic renewable collector. Journal of Cleaner Production, 255, 120289. https://doi.org/10.1016/J.JCLEPRO.2020.120289
Published
How to Cite
Issue
Section
Copyright (c) 2024 Renzo Alejandro Diaz Privat, Piero Jhon Waidhofer Huaman, Joel Rojas Perez, Nelida Tantavilca Martinez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Authors retain copyright and guaranteeing the right magazine to be the first publication of the work as licensed under a Creative Commons Attribution-NonCommercial that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors may establish separate supplemental agreements for the exclusive distribution version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional telematic archives or on their websites) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access)