Chemical and morphological characterization of NixMn(1-x)(OH)2 nanostructured from nickel sulphate industrial solution
Keywords:
baterías de Ni/Fe, hidróxidos dobles laminares de Ni/Mn,, hidróxido de níquel (II)Abstract
The purpose of this work has been to obtain and characterize chemically and morphologically manganese functionalized nickel hydroxide from an industrial nickel(II) sulfate liquor. The investigation was carried out at different Ni/Mn ratios, under controlled experimental conditions. The hydroxide obtained was characterized by atomic absorption spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman microscopy, scanning electron microscopy (SEM) and N2 adsorption. XRD patterns confirm the formation of nicke l(II) hydroxide in its beta phase, as the main mineralogical phase, at the different molar ratios studied. These results were corroborated with the other techniques used. The Ni content varies according to the molar ratios from 44,8 % to 51,5 %. On the other hand, SEM images showed the formation of nanolayers intertwined in the form of flowers, at pH 11 and at pH 13 agglomerates of particles are formed. The adsorption isotherms show mesoporous materials with adequate surface area. Finally, using industrial Ni sulfate solutions, doped with manganese(II) sulfate solution under the established experimental conditions, Ni/Mn lamellar double hydroxides (HDL) are obtained.Downloads
References
Anandan, S., Chen, C. Y. & Wu, J. J. (2014). Sonochemical Synthesis & Characterization of Turbostratic MnNi(OH)2 Layered Double Hydroxide Nanoparticles for Supercapacitor Applications. RSC Advances, 4(98), 55519-55523. https://doi.org/10.1039/C4RA10816G
Chen, H., Ai, Y., Liu, F., Chang, X., Xue, Y., Huang, Q. & Han, S. (2016). Carbon-coated hierarchical Ni-Mn layered double hydroxide nanoarrays on Ni foam for flexible high-capacitance supercapacitors. Electrochimica Acta, 213, 55-65. https://doi.org/10.1016/j.electacta.2016.06.038
Chen, Z., Deng, H., Zhang, M., Yang, Z., Hu, D., Wang, Y. & Yan, K. (2020). One-step facile synthesis of nickel-chromium layered double hydroxide nanoflakes for high-performance supercapacitors. Nanoscale Advances, 2(5), 2099-2105. https://doi.org/10.1039/d0na00178c
Cisneros-Sánchez, D., Leyva-Navarro, E., García-Frómeta, L. A. & Capote-Flores, N. (2020). Obtención de hidróxido de níquel (II) para baterías recargables a partir de soluciones acuosas multicomponentes: efecto de las condiciones de síntesis. Minería y Geología, 36(1), 65-80. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1993-80122020000100065
Cisneros-Sánchez, D., Otero-Calvi, A., Quesada-González, O., Sosa-Martínez, M. & Capote-Flores, N. (2021). Síntesis del hidróxido de níquel (II) con disolución multicomponente de la lixiviación de sulfuro de la tecnología Caron. Revista Colombiana de Química, 50(2), 49-57. https://doi.org/10.15446/rev.colomb.quim.v50n2.89644
Cisneros-Sánchez, D., Leyva-Navarro, E. & Capote-Flores, N. (2015). Obtención de hidróxido de níquel a escala de laboratorio. Tecnología Química, 35(3), 308-321. https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/389
Gamil, S., Antuch, M., Zedan, I. & El Rouby, W. M. (2020). 3D NiCr-layered double hydroxide/reduced graphene oxide sand rose-like structure as bifunctional electrocatalyst for methanol oxidation. Colloids & Surfaces A: Physicochemical and Engineering Aspects, 602, 125067. https://doi.org/10.1016/j.colsurfa.2020.125067
Guo, Y., Hao, C., Yang, Y., Wu, X., Ni, C., Wang, X. & Wang, X. (2022). Convenient synthesis of Ni-Mn-S@rGO composite with enhanced performance for advanced energy storage applications. Ceramics International, 48(7), 9558-9568. https://doi.org/10.1016/j.ceramint.2021.12.154
Jayashree, R. S. &. Kamath, P. V. (2002). Layered double hydroxides of Ni with Cr & Mn as candidate electrode materials for alkaline secondary cells. Journal of Power Sources, 107(1), 120-124. https://doi.org/10.1016/S0378-7753(01)00994-6
Khan, Y., Durrani, S., Mehmood, M., Jan, A. &. Abbasi, M. A (2011). PH-dependant structural & morphology evolution of Ni(OH)2 nanostructures & their morphology retention upon thermal annealing to NiO. Materials Chemistry & Physics, 130(3), 1169-1174. https://doi.org/10.1016/j.matchemphys.2011.08.052
Kosova, N. V., Devyatkina, E. T. & Kaichev, V. V. (2007). Mixed layered Ni-Mn-Co hydroxides: Crystal structure, electronic state of ions, and thermal decomposition. Journal of Power Sources, 174(2), 735-740. https://doi.org/10.1016/j.jpowsour.2007.06.109
Kulkarni, S. B., Jagadale, A. D., Kumbhar, V. S., Bulakhe, R. N., Joshi, S. S. & Lokh&e, C. D. (2013). Potentiodynamic deposition of composition influenced Co1-xNix LDHs thin film electrode for redox supercapacitors. International Journal of Hydrogen Energy, 38, 4046-4053. https://doi.org/10.1016/j.ijhydene.2013.01.047
Laipan, M., Yu, J., Zhu, R., Zhu, J., Smith A. T., He, H. & Sun, L. (2020). Functionalized layered double hydroxides for innovative applications. Materials Horizons, 7(3), 715-745. https://doi.org/10.1039/C9MH01494B
Lang, J. W., Kong, L. B., Wu, W. J., Liu M., Luo, Y. C. & Kang, L. (2009). A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. Journal of Solid State Electrochemistry, 13, 333-340, https://doi.org/10.1007/s10008-008-0560-0
Leyva-Navarro, E., Cisneros-Sánchez, D., Mune-B&era, P. D., Loyola-Breffe, O. & Danguillecourt-Álvarez, E. (2023). Caracterización y evaluación de propiedades físico-químicas y eléctricas del hidróxido de níquel (II), obtenido con licores industriales. Revista Cubana de Química, 35(2), 215-237. https://cubanaquimica.uo.edu.cu/index.php/cq/article/view/5332
Meng, X., Feng, M., Zhang, H., Ma, Z. & Zhang, C. (2017). Solvothermal synthesis of cobalt/nickel layered double hydroxides for energy storage devices. Journal of Alloys & Compounds, 695, 3522-3529. https://doi.org/10.1016/j.jallcom.2016.11.419
Polo, S. C. (2012). Síntesis asistida por ultrasonido de nanoestructuras de compuestos de níquel. (Tesis Doctoral, Universidad Autónoma de Madrid). https://produccioncientifica.ucm.es/documentos/5d39994d2999520684441105
Shakir, Z., Almutairi, S., Shar, S. & Nafady, A. (2020). Nickel hydroxide nanoparticles & their hybrids with carbon nanotubes for electrochemical energy storage applications. Results in Physics, 17, 1031171-1031178. https://doi.org/10.1016/j.rinp.2020.103117
Silva, M. R., Ângelo, A. C. D. & Dall’Antonia, L. H. (2010). Hidróxido de níquel suportado em carbono: um catalisador de baixo custo para a eletro-oxidação de alcoóis em meio alcalino. Química Nova, 33, 2027-2031. https://doi.org/10.1590/S0100-40422010001000004
Vidotti, M., Torresi, R. & Torresi, S. I. (2010). Eletrodos modificados por hidróxido de níquel: un estudio de revisión sobre sus propriedades estruturales y eletroquímicas con miras a su aplicaçións en eletrocatálisis, eletrocromismo y baterias secundarias. Química Nova, 33, 2176-2186. https://doi.org/10.1590/S0100-40422010001000030
Warsi, F., Shakir, I., Shahid, M., Sarfraz, M., Nadeem, M. & Gilani, A. (2014). Conformal coating of cobalt-nickel layered double hydroxides nanoflakes on carbon fibers for high-performance electrochemical energy storage supercapacitor devices. Electrochimica Acta, 135, 513-518. https://doi.org/10.1016/j.electacta.2014.05.020
Young, K. H., Wang, L., Yan, S., Liao, X., Meng, T., Shen, H. & Mays, W. C. (2017). Fabrications of High-Capacity Alpha-Ni(OH)2. Batteries, 3(1), 1-21. https://doi.org/10.3390/batteries3010006
Yu, M., Liu, R., Liu, J., Li, S. & Ma, Y. (2017). Polyhedral-Like NiMn-Layered Double Hydroxide/Porous Carbon as Electrode for Enhanced Electrochemical Performance Supercapacitors. Small, 13(44), 1702616, 2017. https://doi.org/10.1002/smll.201702616
Published
How to Cite
Issue
Section
Copyright (c) 2024 Edelio Danguillecourt-Alvarez
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Authors retain copyright and guaranteeing the right magazine to be the first publication of the work as licensed under a Creative Commons Attribution-NonCommercial that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors may establish separate supplemental agreements for the exclusive distribution version of the work published in the journal (eg, place it in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional telematic archives or on their websites) before and during the submission process, which can produce interesting exchanges and increase citations of the published work. (See The effect of open access)