Recovery of vanadium contained in spent catalysts from the Patricio Lumumba Factory through aluminothermy

Authors

Keywords:

aluminothermy, mill scale, spent catalysts, vanadium, ferroalloys

Abstract

This research studies the recovery of vanadium and other chemical elements, contained in industrial spent catalysts at Patricio Lumumba Factory in Pinar del Río. Three pyrometallurgical charges composed of mill scale, spent catalyst, and aluminum chips, were evaluated. It was possible to obtain 1.5 % V – 28.66 % Si ferroalloys thus increasing perform chemical from 66 % to 88 % as the amount of processed load was increased. The alloy obtained has high brittleness, which facilitates its use in developing alloyed load for welding consumables. The slag performance remained close to 100%, relative to the theoretical potential, being all slags located in the corundum phase region of the Al2O3-Fe2O3-SiO2 state diagram with melting temperature above 1860 °C, which makes them feasible to develop refractory and abrasive materials.

Downloads

Download data is not yet available.

Author Biography

Lorenzo Perdomo-González, Universidad Central “Marta Abreu” de Las Villas

Investigador centro de investigaciones de soldadura Universidad Central de Las Villas

References

Arangurent, F., Mallol, A. (1963). Siderurgia. Madrid, Ed. Dorssat S.A., 612 p.p.

Australian Critical Minerals Prospectus 2020. (2020). Australian Government. Australian Trade and Investment Commision. Geoscience Australia. Department of Industry, Science, Energy and Resources.

Baran, E. (2017). Vanadio: Un nuevo elemento estratégico?. anales acad. nac. de cs. ex., fís. y nat., tomo 69 (2017): 84-114.

Castellanos, J. et al. (2001). Balances de masa y energía. Métodos clásicos y técnicas no convencionales. Editorial Samuel Feijoo, UCLV, 167 p.

Chalmers, B. Metalurgia Física. Editoriañl Aguilar, S.A., Madrid, España, p. 423.

Empresa Química de Cienfuegos. 2018: Cantidades actuales de pentóxido de vanadio y su fuente de generación. DIP Confinatorio Nacional de Desechos Peligrosos. Informe Técnico. 4 p.

Dvořák, P., Hong N. VU. (2017). Zinc Recovery from Flue Dust. Journal of the Polish Mineral Engineering Society. Inżynieria Mineralna, Styczeń, Czerwiec, January – June, 195-199.

Gallardo-Martínez, D., Bruguera-Amarán, N., Díaz-Duque, J., Lastra-Rivera, F., Pons-Herrera, J. (2019). Modelo de gestión ambiental integral para la actividad minero-metalúrgica en yacimientos sulfurosos de Santa Lucía, Pinar del Río. Minería y Geología, v.35 n.4, octubre-diciembre, p. 441-463.

Gasik, M. (2013). Handbook of Ferroalloys. Theory and Technology-Butterworth Heinemann, 520 p.

Fernández, l., Ibáñez, A., Boudet, J. (2016). Reciclaje y reutilización de desechos en la industria cubana. Memorias de la II Convención Internacional de las Industrias, CUBAINDUSTRIAS 2016, junio de 2016, Palacio de las Convenciones de La Habana. Cuba

Ladenberger, A., et. al. (2018). Identification and quantification of secondary CRM resources in Europe. SCRREEN. Coordination and Support Action (CSA). Ref. Ares(2018)1188865 - 02/03/2018

Lara-Rodríguez, J., Tosi Furtado, A. y Altimiras-Martin, A. (2018). Materias primas críticas y complejidad económica en América Latina. Apuntes del CENES. Volumen 37, Nº 65 enero junio 2018. Págs. 15-51

Mathieux, F., et. al. (2017). Critical raw materials and the circular economy. Background report. Joint Research Centre. European Commission. December 2017

Mineral Commodity Summaries 2020. (2020). Vanadium . U.S. Geological Survey. pp. 180 – 181, Reston, Virginia.

Perdomo, L., Quintana-Puchol, R., Rodríguez-Pérez, M., Cruz-Crespo, A., Gómez-Pérez, C. (2018). Balances de masa y calores de reacción para evaluar la extracción de vanadio a partir de catalizadores agotados en el proceso de obtención de ácido sulfúrico. Tecnologí­a Química. vol. XXXVIII, No.3, 2018. P. 594-611

Petranikova, M., Tkaczyk, A., Bartl, A., Amato, A., Lapkovskis, V. y Tunsu, C. (2020). Vanadium sustainability in the context of innovative recycling and sourcing development. Waste Management 113 (2020) 521–544.

Production of Sulphuric Acid, (2000). Best Available Techniques for Pollution Prevention and Control in the European Sulphuric Acid and Fertilizer Industries. Booklet No. 3 of 8. European Sulphuric Acid Association and Fertilizers Europe. Copyright 2000 – ESA/Fertilizers Europe. Second Edition.

Propiedades de los minerales, (2015). Apuntes Geología General. Mineralogía. Museo Virtual, Geología. W.Griem. Chile. https://www.geovirtual2.cl/geologiageneral/PDF-02-02-Minerales.pdfpdf

Riss, A. and khodorovsky, Y. (1975). Production of ferroalloys. Ed. Foreign languages publishing house, Moscow, 278 p

Rodríguez Pérez, M.; Perdomo González, L.; Escobedo, J.; Bejar, L.; Medina, A.; Soriano, J.; Alfonso, I. (2018). Análisis microestructural de revestimientos de fundiciones blancas hipoeutécticas con adiciones de Si y V. Revista de Metalurgia. Año 1965, Vol. 54, Nº. 2. Madrid, España. pp. 35-45

Rodríguez Pérez, M.; Perdomo González, L.; Alfonso, I. (2019). Mejora de la resistencia al desgaste abrasivo de un revestimiento Fe-Cr-Mn-C mediante la adición de V. Revista Matéria, v.24, n.1.

Silin, I., et al. (2020). Review. Mineral Processing and Metallurgical Treatment of Lead Vanadate Ores. Minerals 2020, 10, 197.

Slag atlas (1981). Bearbeitet vom AusschuB metallurgische Grundlagen. Prepared by the Committee for Fundamental Metallurgy. Verlag Stahleisen M. B. H. Düsseldorf.

Torres, A. (1971). Tecnología de los refractarios. Ediciones de ciencia técnica. Instituto cubano del libro. La Habana, 219 pp.

Published

2021-10-15

How to Cite

Perdomo-González, L., Quintana-Puchol, R., Rodríguez-Pérez, M., Rabassa-Rabassa, D., & Cruz-Crespo, A. (2021). Recovery of vanadium contained in spent catalysts from the Patricio Lumumba Factory through aluminothermy. Minería & Geología, 37(3), 303–317. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/art4_No3_2021

Most read articles by the same author(s)

1 2 3 4 > >>