Determining thermal conductivity of lateritic ores from Hot-Ball method

Authors

  • Carlos Zalazar-Oliva Universidad de Moa
  • Ever Góngora-Leyva Universidad de Moa
  • Yoalbys Retirado-Mediaceja Universidad de Moa
  • Andrés Adrian Sánchez-Escalona Empresa Moa Nickel S.A. – Pedro Sotto Alba

Keywords:

thermal conductivity, lateritic ores, Hot-Ball method, mathematical modeling.

Abstract

The thermal conductivity of lateritic ores was determined by using the transitory commonly known Hot- Ball method. An experimental facility was built and an experimental design was used for analyzing the property performance for three temperature values. It was obtained the thermal conductivity of lateritic reaches values from 1.5 to 3.5 W/ (m.k). An adjusted model of 0.98 correlations that estimates the thermal conductivity for the lateritic ores with temperature ranges of 40 °C to 70 °C was established.

Downloads

Download data is not yet available.

Author Biography

Carlos Zalazar-Oliva, Universidad de Moa

Profesor Asistente. Máster en Electromecánica. Centro de Estudio de Energía y Tecnología Avanzada de Moa. Instituto Superior Minero Metalúrgico. Moa, Holguín, Cuba.

References

Carslaw, H. S. y Jaeger, J. C. 1986: Conduction of heat in solids. 2 ed. U.S.A.: Oxford University Press. 520 p. ISBN-10: 0198533683.

Delgado-Drubey, Y. 2013: Método de balance térmico y de masa para la evaluación del proceso de secado en cilindros rotatorios horizontales. Tesis de maestría. Instituto Superior Minero Metalúrgico de Moa.

Díaz, S. C. 2016: Modelamiento cinético del procesamiento de minerales lateríticos de níquel por vía pirometalúrgica. Tesis doctoral. Universidad Nacional de Colombia-Sede Medellín.

Flores-Cuautle, J. y Lara-Hernández, G. 2017: Thermal Properties of Jojoba Oil Between 20∘C and 45∘C. International Journal of Thermophysics, 38(115). Doi: 10.1007/s10765-017-2252-4.

Hammerschmidt, U. y Sabuga, W. 2000: Transient hot wire (THW) method: uncertainty assessment. International Journal of Thermophysics, 21(6): 1255-1278.

Iguaz, A.; Esnoz, A.; Martı́nez, G.; López, A. y Vırseda, P. 2003: Mathematical modelling and simulation for the drying process of vegetable wholesale by-products in a rotary dryer. Journal of food engineering, 59(2-3), 151-160.

Incropera, F. P.; Lavine, A. S.; Bergman, T. L. y DeWitt, D. P. 2006: Fundamentals of heat and mass transfer. 6th ed. John Wiley & Sons Inc. 1024 p.

Keskinkilic, E.; Pournaderi, S.; Geveci, A. y Topkaya, Y. A. 2016: A Study on the Characterization of Nickel Laterites of Central Anatolia. In: 7th International Symposium on High-Temperature Metallurgical Processing (pp. 403-410). Springer, Cham.

Kouyaté, M.; Flores-Cuautle, J. J. A.; Slenders, E.; Sermeus, J.; Verstraeten, B.; Ramirez, B. G. y Glorieux, C. 2015: Study of Thermophysical properties of silver nanofluids by ISS-HD, Hot Ball and IPPE techniques. International Journal of Thermophysics, 36(10-11): 3211-3221.

Krokida, M.; Marinos-Kouris, D. y Mujumdar, A. S. 2007: Rotary Drying. Handbook of Industrial Dryin. Taylor & Francis: Philadelphia.

Kubicar, L. U.; Vretenár, V.; Stofanik, V. y Bohac, V. 2010: Hot-ball method for measuring thermal conductivity. International Journal of Thermophysics, 31(10): 1904-1918.

Kubicar, L. y Bohac, V. 1999: Review of several dynamic methods of measuring thermophysical parameters. Thermal Conductivity, 24: 135-149.

Ponce, R.; Royo, F. J. y Reynoso, A. G. 2018: Modelo matemático de un secadero rotatorio: secado de biomasa sólida lignocelulósica. Ingeniería Mecánica Tecnología y Desarrollo, 6(2): 031–043.

Retirado, Y.; Góngora, E.; Torres, E. y Rojas, A. L. 2007: Comportamiento de la humedad durante el secado solar del mineral laterítico. Minería y Geología, 23(3): 1-19.

Retirado, Y.; Legrá, A. A.; Lamorú, M.; Torres, E. y Laurencio, H. L. 2012: Optimización del secado solar de la mena laterítica en la industria cubana del níquel. Minería y Geología, 28(2): 30-46.

Silva, M. G.; Lira, T. S.; Arruda, E. B.; Murata, V. V. y Barrozo, M. A. S. 2012: Modelling of fertilizer drying in a rotary dryer: parametric sensitivity analysis. Brazilian Journal of Chemical Engineering, 29(2): 359-369.

Strumillo, C.; Jones, P. y Romuald, Z. 2006: Energy aspects in drying. In: Handbook of Industrial Drying. Second edition. p. 1241-1266. New York: Marcel Dekker. 730 p.

Published

2019-10-28

How to Cite

Zalazar-Oliva, C., Góngora-Leyva, E., Retirado-Mediaceja, Y., & Sánchez-Escalona, A. A. (2019). Determining thermal conductivity of lateritic ores from Hot-Ball method. Minería & Geología, 35(4), 419–429. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/art4_No4_2019

Most read articles by the same author(s)

<< < 1 2 3