Influencia de las condiciones de mecanizado en la microdureza y la microestructura del Hastelloy C-276
Palabras clave:
aleación, superaleaciones, torneado, maquinabilidad, durezaResumen
Se analizó la influencia de las condiciones de mecanizado en la microdureza, la dureza superficial y la microestructura durante el torneado del Hastelloy C-276, de aplicación en la producción de piezas para la industria del níquel. Para ello se realizó un estudio de la variación de la dureza superficial de la pieza en función del tiempo principal de corte y de la microdureza en función del radio de la herramienta. Los resultados arrojaron que durante el torneado de la aleación Hastelloy C-276 existe una relación estadísticamente significativa entre la dureza HRC media y el tiempo principal de corte. Se comprueba a partir del análisis de la microestructura que el incremento de la microdureza Vickers es ocasionado por el efecto de la acritud que origina un endurecimiento de la capa de material inmediatamente inferior a la superficie cortada y por tanto una disminución de la vida de la herramienta y de la maquinabilidad del material.Descargas
Citas
CAI, X., QIN, S., LI, J., AN, Q, & CHEN, M. (2014). Experimental investigation on surface integrity of end milling nickel-based alloy—Inconel 718. Machining Science and Technology, 18(1), 31-46. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/10910344.2019.1575400?journalCode=lmst20.
DINIZ, A. E., MARCONDES, F. C. & COPPINI, N. L. (2003). Tecnologia da usinagem dos metais. Editora Artliber, 4ª ed., São Paulo, Brasil.
GLORIA, A., MONTANARI, R., RICHETTA, M. & VARONE, A. (2019). Alloys for aeronautic applications, State of the art and perspectives. Metals, 9(6), 662. Disponible en: https://www.mdpi.com/2075-4701/9/6/662.
GRIFFITHS, B. J. (1987). Mechanisms of white layer generation with reference to machining and deformation processes. Journal of Tribology, 109(30), 525-530. Disponible en: https://asmedigitalcollection.asme.org/tribology/article-abstract/109/3/525/437844/Mechanisms-of-White-Layer-Generation-With
HERBERT, C. R. J., AXINTE, D. A., HARDY, M. C. & BROWN, P. D. (2011). Investigation into the characteristics of white layers produced in a nickel-based superalloy from drilling operations. Procedia Engineering, 19, 138-143. Disponible en: https://www.sciencedirect.com/science/article/pii/S1877705811029018.
JAWAHIR, I. S., BRINKSMEIER, E., SAOUBI, R. M., ASPINWALL, D. K., OUTEIRO, J. C, MEYER, D., UMBRELLO, D. & JAYAL, A. D. (2011). Surface integrity in material removal processes, Recent advances. CIRP annals, 60(2), 603-626. Disponible en: https://www.sciencedirect.com/science/article/pii/S0007850611002046.
KAITAO, X., BIN, Z., CHUANZHEN, H., YANG, Y., HUIJUN, Z. & ZHANQIANG. L. (2015). Machinability of Hastelloy C-276 using Hot-pressed sintered Ti (C 7 N 3)-based cermet cutting tools. Chinese Journal of Mechanical Engineering, 28(3), 599-606. Disponible en: https://cjme.springeropen.com/articles/10.3901/CJME.2015.0316.031.
KESAVAN, J., SENTHILKUMAR, V. & DINESH, S. (2020). Experimental and numerical investigations on machining of Hastelloy C276 under cryogenic condition. Materials Today, Proceedings, 27, 2441-2444. Disponible en: https://www.ias.ac.in/article/fulltext/sadh/045/0240.
PAULSEN, T., PECAT, O. & BRINKSMEIER, E. (2016). Influence of different machining conditions on the subsurface properties of drilled Ti6Al4V. Procedia Cirp, 46, 472-475. Disponible en: https://www.sciencedirect.com/science/article/pii/S2212827116302116.
RAHMAN, M. S., DING, J., BEHESHTI, A., ZHANG, X. & POLYCARPOU, A. A. (2018). Elevated temperature tribology of Ni alloys under helium environment for nuclear reactor applications. Tribology International, 123, 372-384. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0301679X1830166X.
SINGH, G., AGGARWAL, V. & SINGH, S. (2021). Experimental investigations into machining performance of Hastelloy C-276 in different cooling environments. Materials and Manufacturing Processes, 36(15), 1789-1799. Disponible en: https://iom3.tandfonline.com/doi/abs/10.1080/10426914.2021.1945099?needAccess=true&journalCode=lmmp20.
SIVALINGAM, V., ZHUOLIANG, Z., JIE, S., BASKARAN, S., YUVARAJ, N., GUPTA, M. K. & AQIB, M. K. (2021). Use of atomized spray cutting fluid technique for the turning of a nickel base superalloy. Materials and Manufacturing Processes, 36(3), 373-380. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/10426914.2020.1832687.
SOO, S., Hood, R., Aspinwall, D., Voice, W. & Sage, C. (2011). Machinability and surface integrity of RR1000 nickel-based superalloy. CIRP annals, 60(1), 89-92. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0007850611000953.
THAKUR, A. & GANGOPADHYAY, S. (2016). State-of-the-art in surface integrity in machining of nickel-based super alloys. International Journal of Machine Tools and Manufacture, 100, 25-54. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0890695515300730.
THAKUR, A., GANGOPADHYAY, S. & MOHANTY, A. (2015). Investigation on some machinability aspects of Inconel 825 during dry turning. Materials and Manufacturing Processes, 30(8), 1026-1034. Disponible en: https://www.mdpi.com/1996-1944/11/11/2088.
TRENT, E. & WRIGHT. P. (2000). Metal Cutting. 4th edition. Butterworth–Heinemann. Massachusetts, United States of America, 439 p.
ULUTAN, D. & OZEL, T. (2011). Machining induced surface integrity in titanium and nickel alloys, A review. International Journal of Machine Tools and Manufacture, 51(3), 250-280. Disponible en: HTTP://COEWWW.RUTGERS.EDU/MARL/PDF/2011-ULUTAN-OZEL-IJMTM.PDF.
UMBRELLO, D. (2013). Investigation of surface integrity in dry machining of Inconel 718. The International Journal of Advanced Manufacturing Technology, 69(9), 2183-2190.
ZHENG, G. & SRIDHARAN, K. (2018). Corrosion of structural alloys in high-temperature molten fluoride salts for applications in molten salt reactors. Jom, 70(8), 1535-1541. Disponible en: https://dspace.mit.edu/handle/1721.1/131918.
ZHOU, J. M., BUSHLYA, V. & STAHL, J. E. (2012). An investigation of surface damage in the high speed turning of Inconel 718 with use of whisker reinforced ceramic tools. Journal of Materials Processing Technology, 212(2), 372-384. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0924013611002810.
ZHOU, J. M., BUSHLYA, V., PENG, R., CHEN, Z., JOHANSSON, S. & STAHL, J. (2014). Analysis of subsurface microstructure and residual stresses in machined Inconel 718 with PCBN and Al2O3-SiCw tools. Procedia Cirp, 13, 150-155. Disponible en: https://www.infona.pl/resource/bwmeta1.element.elsevier-3426da4f-ae0a-36ac-80ca-8ad70b0512fd/tab/linkedResources.
Publicado
Cómo citar
Número
Sección

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Esta obra está bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional
La Revista Ciencia & Futuro es una revista de acceso abierto, todo el contenido está disponible gratuitamente sin cargo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o utilizarlos para cualquier otro fin lícito, sin pedir permiso previo al editor o al autor. Todo lo anterior, de acuerdo con la definición de BOAI de acceso abierto.
Los autores que publican en esta revista están de acuerdo con los siguientes términos: Licencia Creative Commons Atribución-NoComercial permite que el beneficiario de la licencia tenga el derecho de copiar, distribuir, exhibir y representar la obra y hacer obras derivadas para fines no comerciales siempre y cuando reconozca y cite la obra de la forma especificada por el autor o el licenciante. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista. Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés). Lo anterior debe realizarse siempre sobre el artículo ya publicado por Ciencia & Futuro.
Los autores mantienen el control sobre la integridad de sus trabajos y el derecho a ser adecuadamente reconocidos y citados.
A los editores se les otorgan derechos no exclusivos para publicar y distribuir.