Influence of machining conditions on the microhardness and microstructure of Hastelloy C-276

Authors

  • Bruno Cuevas Lozano Universidad de Oriente
  • Jimmy E. Sosa Vargas Universidad de Oriente

Keywords:

Turning, alloy, machinability, microhardness

Abstract

This work investigates the influence of machining conditions on microhardness, surface hardness and microstructure during turning of Hastelloy C-276, applied in the production of parts for the nickel industry. For this, a study was carried out on the variation of the surface hardness of the piece as a function of the main cutting time and of the microhardness as a function of the radius of the tool. The results showed that during the turning of the Hastelloy C-276 alloy there is a statistically significant relationship between the mean HRC hardness and the main cutting time. It was verified from the analysis of the microstructure that the increase in Vickers microhardness is caused by the effect of acrimony that causes a hardening of the layer of material immediately below the cut surface and therefore a decrease in the life of the too, and the machinability of the material. It was shown that, during turning, chips are formed in strips of great length and small thickness, which are typical of ductile materials that are difficult to machine.

Downloads

Download data is not yet available.

References

CAI, X., QIN, S., LI, J., AN, Q, & CHEN, M. (2014). Experimental investigation on surface integrity of end milling nickel-based alloy—Inconel 718. Machining Science and Technology, 18(1), 31-46. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/10910344.2019.1575400?journalCode=lmst20.

DINIZ, A. E., MARCONDES, F. C. & COPPINI, N. L. (2003). Tecnologia da usinagem dos metais. Editora Artliber, 4ª ed., São Paulo, Brasil.

GLORIA, A., MONTANARI, R., RICHETTA, M. & VARONE, A. (2019). Alloys for aeronautic applications, State of the art and perspectives. Metals, 9(6), 662. Disponible en: https://www.mdpi.com/2075-4701/9/6/662.

GRIFFITHS, B. J. (1987). Mechanisms of white layer generation with reference to machining and deformation processes. Journal of Tribology, 109(30), 525-530. Disponible en: https://asmedigitalcollection.asme.org/tribology/article-abstract/109/3/525/437844/Mechanisms-of-White-Layer-Generation-With

HERBERT, C. R. J., AXINTE, D. A., HARDY, M. C. & BROWN, P. D. (2011). Investigation into the characteristics of white layers produced in a nickel-based superalloy from drilling operations. Procedia Engineering, 19, 138-143. Disponible en: https://www.sciencedirect.com/science/article/pii/S1877705811029018.

JAWAHIR, I. S., BRINKSMEIER, E., SAOUBI, R. M., ASPINWALL, D. K., OUTEIRO, J. C, MEYER, D., UMBRELLO, D. & JAYAL, A. D. (2011). Surface integrity in material removal processes, Recent advances. CIRP annals, 60(2), 603-626. Disponible en: https://www.sciencedirect.com/science/article/pii/S0007850611002046.

KAITAO, X., BIN, Z., CHUANZHEN, H., YANG, Y., HUIJUN, Z. & ZHANQIANG. L. (2015). Machinability of Hastelloy C-276 using Hot-pressed sintered Ti (C 7 N 3)-based cermet cutting tools. Chinese Journal of Mechanical Engineering, 28(3), 599-606. Disponible en: https://cjme.springeropen.com/articles/10.3901/CJME.2015.0316.031.

KESAVAN, J., SENTHILKUMAR, V. & DINESH, S. (2020). Experimental and numerical investigations on machining of Hastelloy C276 under cryogenic condition. Materials Today, Proceedings, 27, 2441-2444. Disponible en: https://www.ias.ac.in/article/fulltext/sadh/045/0240.

PAULSEN, T., PECAT, O. & BRINKSMEIER, E. (2016). Influence of different machining conditions on the subsurface properties of drilled Ti6Al4V. Procedia Cirp, 46, 472-475. Disponible en: https://www.sciencedirect.com/science/article/pii/S2212827116302116.

RAHMAN, M. S., DING, J., BEHESHTI, A., ZHANG, X. & POLYCARPOU, A. A. (2018). Elevated temperature tribology of Ni alloys under helium environment for nuclear reactor applications. Tribology International, 123, 372-384. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0301679X1830166X.

SINGH, G., AGGARWAL, V. & SINGH, S. (2021). Experimental investigations into machining performance of Hastelloy C-276 in different cooling environments. Materials and Manufacturing Processes, 36(15), 1789-1799. Disponible en: https://iom3.tandfonline.com/doi/abs/10.1080/10426914.2021.1945099?needAccess=true&journalCode=lmmp20.

SIVALINGAM, V., ZHUOLIANG, Z., JIE, S., BASKARAN, S., YUVARAJ, N., GUPTA, M. K. & AQIB, M. K. (2021). Use of atomized spray cutting fluid technique for the turning of a nickel base superalloy. Materials and Manufacturing Processes, 36(3), 373-380. Disponible en: https://www.tandfonline.com/doi/abs/10.1080/10426914.2020.1832687.

SOO, S., Hood, R., Aspinwall, D., Voice, W. & Sage, C. (2011). Machinability and surface integrity of RR1000 nickel-based superalloy. CIRP annals, 60(1), 89-92. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0007850611000953.

THAKUR, A. & GANGOPADHYAY, S. (2016). State-of-the-art in surface integrity in machining of nickel-based super alloys. International Journal of Machine Tools and Manufacture, 100, 25-54. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0890695515300730.

THAKUR, A., GANGOPADHYAY, S. & MOHANTY, A. (2015). Investigation on some machinability aspects of Inconel 825 during dry turning. Materials and Manufacturing Processes, 30(8), 1026-1034. Disponible en: https://www.mdpi.com/1996-1944/11/11/2088.

TRENT, E. & WRIGHT. P. (2000). Metal Cutting. 4th edition. Butterworth–Heinemann. Massachusetts, United States of America, 439 p.

ULUTAN, D. & OZEL, T. (2011). Machining induced surface integrity in titanium and nickel alloys, A review. International Journal of Machine Tools and Manufacture, 51(3), 250-280. Disponible en: HTTP://COEWWW.RUTGERS.EDU/MARL/PDF/2011-ULUTAN-OZEL-IJMTM.PDF.

UMBRELLO, D. (2013). Investigation of surface integrity in dry machining of Inconel 718. The International Journal of Advanced Manufacturing Technology, 69(9), 2183-2190.

ZHENG, G. & SRIDHARAN, K. (2018). Corrosion of structural alloys in high-temperature molten fluoride salts for applications in molten salt reactors. Jom, 70(8), 1535-1541. Disponible en: https://dspace.mit.edu/handle/1721.1/131918.

ZHOU, J. M., BUSHLYA, V. & STAHL, J. E. (2012). An investigation of surface damage in the high speed turning of Inconel 718 with use of whisker reinforced ceramic tools. Journal of Materials Processing Technology, 212(2), 372-384. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0924013611002810.

ZHOU, J. M., BUSHLYA, V., PENG, R., CHEN, Z., JOHANSSON, S. & STAHL, J. (2014). Analysis of subsurface microstructure and residual stresses in machined Inconel 718 with PCBN and Al2O3-SiCw tools. Procedia Cirp, 13, 150-155. Disponible en: https://www.infona.pl/resource/bwmeta1.element.elsevier-3426da4f-ae0a-36ac-80ca-8ad70b0512fd/tab/linkedResources.

Published

2023-07-13

How to Cite

Cuevas Lozano, B., & Sosa Vargas, J. E. (2023). Influence of machining conditions on the microhardness and microstructure of Hastelloy C-276. Ciencia & Futuro, 13(2), 218–234. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/2302

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)