Application of rheological equations for channel balancing in plastic injection molds

Authors

  • Yuri H. Villalta-Elejalde Instituto Tecnológico de la Habana (CUJAE)
  • Orestes Arias-Rodríguez Instituto Tecnológico de la Habana (CUJAE)

Keywords:

channels, feeding, simulation, plastics, injection, balanced.

Abstract

A methodology was developed to balance the filling in multi-cavity plastic injection molds, using rheological equations. This methodology was applied in the design of the feeding system for the mold of two pieces of a medical equipment, destined to patients with cardiac diseases. Both pieces due to their difference in volume posed a problem during the filling of the mold. Firstly, a symmetrical feeding system was proposed, sized according to general empirical recommendations. The methodology for balancing the system was plated by varying the diameter of one of the input channels. The expressions for the calculation correspond to a non-Newtonian flow whose behavior is pseudoplastic and were obtained starting from the generalized Navier-Stokes, to then apply the mathematical model of Ostwald-De Waele (Law of power). By means of the obtained expressions, the necessary diameter was calculated in the filling channel corresponding to the cavity of smaller volume, in order to match the filling times in both cavities. The results obtained were verified through a simulation of filling done in Autodesk Moldflow Adviser.

Downloads

Download data is not yet available.

Author Biographies

Yuri H. Villalta-Elejalde, Instituto Tecnológico de la Habana (CUJAE)

Ingeniería mecánica

Orestes Arias-Rodríguez, Instituto Tecnológico de la Habana (CUJAE)

Ingeniería mecánica

References

JOSHI, S. C.; LAM, Y. C.; BOEY, F. Y. C. & TOK, A. I. Y. 2002. Power law fluids and Bingham plastics flow models for ceramic tape casting. Journal of Materials Processing Technology 120(1): 215-225.

LI, H. X.; WANG, J. Y. & AN, C. W. 2014. Study on the rheological properties of CL-20/HTPB casting explosives. Central European Journal of Energetic Materials 11(2): 237-255.

MAHANTA, A. K.; DHARMSAKTU, I. & PATTNAYAK, P. K. 2007. Rheological Behaviour of HTPB-based Composite Propellant: Effect ofTemperature and Pot Life on Casting Rate. Defence Science Journal 57(4): 435-442.

RAO, M. A. 2013. Rheology of fluid, semisolid and solid foods, food engineering series. 3 ed. Springer Science & Business Media, NY, 461 p. ISBN: 978-1-4614-9229-0.

RODRÍGUEZ-GONZÁLEZ, F.; PÉREZ-GONZÁLEZ, J.; MARÍN-SANTIBÁÑEZ, B. M. & DE VARGAS, L. 2009. Kinematics of the stick–slip capillary flow of high-density polyethylene. Chemical Engineering Science 64(22): 4675-4683. Consultado: 3 julio 2017. Disponible en: ht//www.elsevier.com/locate/ces.

SADIKU-AGBOOLA, O.; SADIKU, R. E.; ADEGBOLA, A. T. & BIOTIDARA, O. F. 2011. Rheological properties of polymers: structure and morphology of molten polymer blends. Materials Sciences and Applications 2: 30-41. Consultado: 9 oct 2017. Disponible en: http://www.SciRP.org/journal/msa.

SÁNCHEZ, G.; VIAL, C. & MORAGA, N. 2002. Estudio de fluidos no newtonianos con los métodos de volúmenes y elementos finitos. Revista Facultad de Ingeniería-Universidad de Tarapacá 10: 23-34.

SHOEMAKER, J. 2011. Moldflow Design Guide. First ed. Moldflow Corporation, Framingham, Massachusetts, U.S.A.

SZUCS, A. & BELINA, K. 2012. Reological and thermal analysis of the filling stage of injection molding. EXPRESS Polymer Letters 6: 672-679. Consultado: 11 agosto 2017. http://www.expresspolymlett.com

YOUNES, B. 2015. Simple Rheological Analysis Method of Spinnable-Polymer Flow Properties Using MFI Tester. Indian Journal of Materials Science 2015: 1-8.

Published

2017-12-06

How to Cite

Villalta-Elejalde, Y. H., & Arias-Rodríguez, O. (2017). Application of rheological equations for channel balancing in plastic injection molds. Ciencia & Futuro, 7(4), 59–73. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/1478

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)