Variations microstructural of a steel exposed micro alloyed to high temperatures

Authors

  • Eider Mora-Terrero Instituto Superior Minero Metalúrgico
  • Tomás Fernández-Columbié Instituto Superior Minero Metalúrgico
  • Yurileysis Reyes-Galindo Empresa Termoeléctrica de Felton
  • Osmar Ochoa-Matos Empresa Termoeléctrica de Felton

Keywords:

admission valve, escape valve, microstructure, offspring

Abstract

The variations microestructurales of a steel micro alloy used in the production of the admission valves and escape of an engine of internal combustion is analyzed, which have suffered transformation due to the work temperature. For this analysis a valve was selected without being exposed to work conditions and valves (one of admission and another of escape) retreat of service that they were cut in different parts like in the head of the valve, the inferior part and superior of the offspring, as well as the centre of the same one. It was determined that it stops 400 oC, temperature of work of the admission valve, transformation of phases it doesn't exist in the steel and although the escape valve should work to 700 oC, it exists transformations in the structure that predicts that, for the deformations in the crystalline net, this temperature is above the 850 oC for the presence of the martensite and the sorbit, with an increment of the hardness of up to 450 HV in the retired offspring of service.

Downloads

Download data is not yet available.

References

ARÁUJO, J. & NOWELL, D. 2002. The effect of rapidly varying contact stress fields on fretting fatigue. International Journal of Fatigue 24(7): 763-775.

CALLISTER, W. 2000. Materials Science and Engineering. An Introduction. Fifth Ed. John Wiley & Sons, Inc., 8195 p.

CHUNGEN, Z. 1999. Deposition of aluminise and chromium–modified aluminise coatings on TiAl alloys using the allied activate pack cementation method. Chinese Journal of Aeronautics 12(1): 24-32.

DINDA, S. & KUJAWSKI, D. 2004. Correlation and prediction of fatigue crack growth for different ratios using parameters. Engineering Fracture Mechanics 71(12): 1779-1790.

GULIAEV, A. 1983. Metalografía. Tomo 2. Editorial Mir, Moscú.

HUSSAINOVA, I. & SCHADE, K. 2008. Correlation between solid particle erosion of cermets and particle impact dynamics. Tribology International 41(14): 323-330.

JOHANSSON, B. & OLSSON, A. 2000. Current design practice and research on stainless steel structures in Sweden. Journal of Constructional Research 54(21): 3-29.

MORENO, F.; WILMAN, J.; SALAZAR, C. & LAURA, A. 2005. Evaluación del comportamiento mecánico a la fatiga en aceros

AISI 4340 y AISI 4140 tratados térmicamente con recocidos y normalizados. Revista Ingeniería UC 12(1): 40-45.

SMITH, K.; WATSON; P. & TOPPER, T. 1970. A stress-strain functions for the fatigue of metals. Journal of Materials 5(4): 767-778.

ZHANG, M.; KELLY, P. & GATES, J. 2003. The effect of heat treatment on the toughness, hardness and microstructure of low carbon white cast irons. Journal of Materials Science 36(15): 3865-3875.

Published

2018-09-11

How to Cite

Mora-Terrero, E., Fernández-Columbié, T., Reyes-Galindo, Y., & Ochoa-Matos, O. (2018). Variations microstructural of a steel exposed micro alloyed to high temperatures. Ciencia & Futuro, 8(3), 45–58. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/1622

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)

1 2 3 > >>