Thermal effect of submerged arc welding on API 5L x42 steel

Authors

  • René Legrá-Rodríguez Instituto Superior Minero Metalúrgico
  • Alfredo Breffe-Fernández Instituto Superior Minero Metalúrgico
  • Tomás Fernández-Columbié Instituto Superior Minero Metalúrgico
  • Héctor Linares-Suárez Instituto Superior Minero Metalúrgico

Keywords:

micro-alloyed steel, microstructure, pipeline, flux, hardness.

Abstract

The microstructural performance of a low alloy steel API 5L X42 used in pipeline, welded through the submerged arc welding process (SAW) was established. The welding was done at the top with preparation of the edges at 30°, in a pipe with a diameter of 250 mm; the filler material used was F48 A0-EL-12 with agglomerated flux H-400. The microstructural analysis was carried out in the molten zone, in the interface and the thermal influence zone; where the fine grain phases of the troostitic type and coarse grain with ferrite network and the molten zone of the base metal, ferrite of structure Widmanstátten, were obtained. When determining the hardness profiles, it is obtained that this one is 163.8 HV with the base metal, which increases to 207.6 HV in the molten zone. 

Downloads

Download data is not yet available.

Author Biographies

René Legrá-Rodríguez, Instituto Superior Minero Metalúrgico

Ingeniería Mecánica

Alfredo Breffe-Fernández, Instituto Superior Minero Metalúrgico

Ingeniería Mecánica

Tomás Fernández-Columbié, Instituto Superior Minero Metalúrgico

Ingeniería Mecánica

Héctor Linares-Suárez, Instituto Superior Minero Metalúrgico

Ingeniería Mecánica

References

ANSI, C. C. AWS D1. 1/2000. 2000. Publicaciones AWS, USA.

ASTM E3-95. 2001. Standard Practice for Preparation of Metallographic Specimens. ASTM International, West Conshohocken, PA.

ASTM A262-15. 2015. Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels. ASTM International, West Conshohocken, PA.

BATISTA-SÁNCHEZ, W. 2015. Efecto térmico de la soldadura por arco sumergido en un acero bajo aleado. Tesis de grado. Instituto Superior Minero Metalúrgico de Moa.

BANG, I.; SON, Y.; OH, K.; KIN, Y. & KIM, W. 2002. Numerical simulation of sleeve repair welding of in-service gas pipelines. Welding Research Supplement, Welding Journal 34(12): 273-282.

CISILINO, A.; CHAPETTI, M. & OTEGUI, J. 2000. Minimum thickness for circumferential sleeve repair fillet welds in corroded gas pipelines. International Journal of Pressure Vessel and Piping 79(12): 67-76.

ISHIKAWA, N.; SHINMIYA, T. & IGI, S. 2006. Toughness evaluation on seam HAZ of high strength line pipe. International Journal of Fracture 23(3): 23-32.

JANG-BOG, J. & KWON, D. 2002. The effect of microestructural change on fracture behavior in heat-affected zone of API 5L pipeline steel. International Journal of Fracture 12(2): 10-18.

NOLAN, D.; STERJOVSKI, Z. & DUNNE, D. 2005. Hardness prediction models based on HAZ simulation for in – service welded pipeline steels. Science and Technology of Welding and Joining 6(10): 681-694.

ODDY, A. & MCDILL, J. 1999. Burn through prediction in pipeline welding. International Journal of Fracture 97(4): 249-261.

YU-ICHI, K. 2008. Overview of recent Welding technology relating to pipeline construction. Transactions of JWRI 37(1): 1-5.

Published

2018-12-07

How to Cite

Legrá-Rodríguez, R., Breffe-Fernández, A., Fernández-Columbié, T., & Linares-Suárez, H. (2018). Thermal effect of submerged arc welding on API 5L x42 steel. Ciencia & Futuro, 8(4), 77–90. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/1741

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)

1 2 3 > >>