Behavior microestructural of founding ич x 28 h2 to use m in body of centrifugal pumps in the mining industry

Authors

  • Santiago R. Guibert-Adolfo Instituto Superior Minero Metalúrgico

Keywords:

Microestructural, white iron, oven of induction

Abstract

Does the work have as objective to determine the behaviour of the white foundry of the type ИЧ X 28 H2 to be an employee in the centrifugal production of bomb body for its high hardness before the abrasive waste. He was carried out the foundry process in an induction oven with hearth of high frequency, where the selected load was starting from scrap and levering and three obtained samples of the foundry process were analyzed. In the analysis microstructure it was determined that the present morphologies in the same ones were the carbide eutectic of the type Cr7C3 and the martensit presence, micro constituent’s that present high hardness, as well as the presence of austenita dendrite and retained austenita that infer to the foundry a high resistance to the abrasive waste without being subjected to high crash demands. Was it determined through the profiles of hardness that the same ones are of 645 and 655 HV, these they are among the parameters settled down by the norms ASTM AT 532 and does it characterize the foundry like class 3 type TO and do these established properties allow to outline that the white foundry ИЧ X 28 H2 employee can be in body of centrifugal bombs. 

Downloads

Download data is not yet available.

Author Biography

Santiago R. Guibert-Adolfo, Instituto Superior Minero Metalúrgico

Metalurgia y materiales

References

AGUILAR, W. & BOERI, R. 2000. Comportamiento a la segregación de los elementos de aleación usados en fundiciones esferoidales de fabricación. Jornadas SAM–IV Coloquio Latinoamericano de Fractura y Fatiga, Agosto, p. 123-130.

BEDOLLA, A.; ARIAS, L. & HERNÁNDEZ, B. 2003. Kinetics of Secondary Carbides Precipitation in a High-Chromium White Iron. Journal of Materials Engineering and Performance 12(4): 371–382.

CATALINA, A.; GUO, X.; STEFANESCU, D.; CHUZHOY, L. & PERSHING, M. 2000. Prediction of Room Temperature Microstructure and Mechanical Properties in Gray Iron Casting. AFS Transactions 108(72): 247–257.

CHUNG, R.; TANG, X.; LI, D.; HINCKLEY, B. & DOLMAN, K. 2009. Effects of titanium addition on microstructure and wear resistance of hypereutectic high chromium cast iron Fe–25wt.% Cr–4wt. %C. Wear 267(1-4): 356–361.

DAVID, T.; BABU, R. & VITEK, S. 2001. Recent advances in modelling and a characterisation in weld microstructure: Final Report. Science and technology of welding and joining 7(6): 362-365.

FUKAURA, K.; YOKOYAMA, Y.; YOKOL, D.; TSUJII, N. & ONO, K. 2004. Fatigue of cold-work tool steels: effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations. Metallurgical and materials transactions A 35(4): 1289-1300.

FLÓREZ, O.; CASTAÑO, R. & HIGUERA, O. 2010. Comportamiento microestructural de una fundición blanca al alto cromo sometida a ciclos de tratamientos térmico. Scientia et Technica Año XVI(45): 43-48.

GARCÍA, A. 2001. Aleaciones resistentes a la corrosión para la Empresa J. S. Gayol. Informe sobre Investigaciones. UC.

LIU, H. H.; WANG, J.; SHEN, B. L.; YANG, H. S.; GAO, S. J. & HUANG, S. J. 2007. Effects of deep cryogenic treatment on property of 3Cr13Mo1V1. 5 high chromium cast iron. Materials & design 28(3): 1059-1064.

HEINE, R. 1986. The Fe-C-Si Solidification Diagram for Cast Irons. AFS Transactions 86-71: 391-402.

WANG, Y. Y.; LI, C. J. & OHMORI, A. 2005. Influence of substrate roughness on the bonding mechanisms of high velocity oxy-fuel sprayed coatings. Thin Solid Films 485(1-2): 141-147.

MARSHALL, D.; NOMA, T. & EVANS, A. 1982. A Simple Method for Determining Elastic Modulus to Hardness Communications of the American Ceramic Ratios using Knoop Indentation Measurements. Journal of the American Ceramic Society 65(10): 175–176.

NAVA, E. 2000. Aleación Mecánica: Método de obtención de polvos metálicos y de materiales compuestos. Revista de Metalurgia 36(16): 279–286.

OLIVER, W. & PHARR, G. 2004. Review: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19(1): 3–20.

ONSOIEN, M.; GRONG, O.; GUNDERSEN, O. & SKALAND, T. A. 1999. Process Model for the Microstructure Evolution in Ductile Cast Iron: Part I. The Model. Metallurgical and Material Transaction A 30(4): 1053–1068.

RIVERA, G.; BOERI, R. & SIKORA, J. 2000. Influencia de la inoculación sobre el refinamiento de la estructura de solidificación y sobre las propiedades mecánicas. Jornadas SAM–IV Coloquio de Fundiciones Esferoidales Eutécticas, Latinoamericano de Fractura y Fatiga, Agosto.

ROJAS, M.; MARTÍNEZ, R.; BOERI, R.; SIKORA, J., 2000. Análisis de la Formación de Microestructura en Fundiciones Esferoidales Mediante Técnicas Computacionales. Jornadas SAM–IV Coloquio Latinoamericano de Fractura y Fatiga, Agosto.

SÁNCHEZ, H. 2003. Síntesis y caracterización de nuevos materiales utilizando tecnologías de polvos. Proyecto de investigación Conciencias. Santiago de Cali.

SOURMAIL, H. 2001. Precipitation in creep resistant austenitic stainless steel. Materials science and technology 17(1): 1-14.

SUÁREZ-SANABRIA, A. & FERNÁNDEZ-CARRASQUILLA, J. 2006. Microestructura y propiedades mecánicas de una fundición esferoidal ferrítica en bruto de colada para su uso en piezas de grandes dimensiones. Revista de Metalurgia 42(1): 18-31.

Published

2019-03-12

How to Cite

Guibert-Adolfo, S. R. (2019). Behavior microestructural of founding ич x 28 h2 to use m in body of centrifugal pumps in the mining industry. Ciencia & Futuro, 9(1), 101–116. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/1773

Issue

Section

Ciencia Universitaria