Contact stress in the wear of a bearing of a steam turbine for electric generation

Authors

  • Fernando de la Vara-Garrido Universidad de Moa
  • Ledennis Suárez-Torres Universidad de Moa
  • Tomás Fernández-Columbié Universidad de Moa
  • Efrain Guzmán-Romero Universidad de Moa

Keywords:

bearing, stresses, tribological torque, slip, wear

Abstract

The contact stresses in the wear of a bearing of a steam turbine for electricity generation were determined. The chemical composition of the babbit metal was characterized to establish the charge to be used. Being a sectioned bearing, this same arrangement was considered for the simulation by the finite element method. It was determined that the thickness of the coating is 2,3 mm and the wear caused by the effect of friction is 1,07 mm deep; which represents 46% of this wear and that the cause of the defect is possibly the deficient lubrication in the tribological torque and that, in the stresses, deformations and displacements, the tangential and radial directions are not independent of each other and that the Loss of material generates maximum stresses of 9,264 N/m2 and minimum of 7,720 N/m2 inside the sliding track.

Downloads

Download data is not yet available.

References

CUPILLARD, S.; CERVANTES, M. & GLAVATSKIH, S. 2014. Thermo hydrodynamic analysis of a journal bearing with a microgroove on the shaft. Computational Thermal Sciences: An International Journal 6(1): 17-28.

DAQUINTA, A. 2010. Durabilidad del par de fricción compuesto por el árbol de levas y el cuerpo de los cojinetes del motor VAZ de fabricación Rusa. Revista Ciencias Técnicas Agropecuarias 19(4): 67-73.

GARCÍA, A.; LINARES, J. & ARIAS, M. 2013. Investigación numérica de las condiciones de lubricación en chumaceras hidrodinámicas con el efecto del desalineamiento del eje. Ingeniería, investigación y tecnología 14(1): 89-98.

GUJAR, R. & BHASKAR, S. 2013. Shaft design under fatigue loading by using modified Goodman method. International Journal of Engineering Research and Applications (IJERA) 3(4): 1061-1066.

HUTTON, D. & PULLMAN, W. 2006. Fundamental of Finite Elements Analysis. McGraw−Hill, EE.UU.

LOBODA, I.; YEPIFANOV, S. & FELDSHTEYN, Y. 2009. Diagnostic analysis of maintenance data o fault gas turbine for driving an electric generator. ASME Turbo Expo 2009: International Technical Congress “Power for Land Sea & Air”, Orlando, Florida, USA, 12p., ASME Paper No. GT200‐6 0176, June 8‐12.

MORENO, J.; ALHAMA, F. & GÓMEZ DE LEÓN, F. 2005. Campo de temperaturas en cojinetes deslizantes. Revista Iberoamericana de Ingeniería Mecánica 9(3): 49-55.

RODRÍGUEZ-RODRÍGUEZ, A. 2017. Análisis CFD de un álabe del último paso de una turbina de vapor. Tesis en opción al título de Ingeniero Mecánico. Universidad Politécnica de Madrid.

ROEMER, M.; KACPRZYNSKI, J. & GREGORY J. 2000. Advanced diagnostics and prognostics for gas turbine engine risk assessment. In 2000 IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484) 6: 345-353.

SAWALHI, N. & RANDALL, R. 2008. Simulating gear and bearing interactions in the presence of faults Part I. The combined gear bearing dynamic model and the simulation of localized bearing faults. Mechanic Systems and Signal Processing 22(2): 1924-1951.

SUÁREZ, F.; TORO, F. & VÉLEZ, J. 2012. Efecto de la textura superficial en el desempeño a fricción de cojinetes de empuje. Ingeniería, investigación y tecnología 13(1): 97-103.

Published

2022-09-09

How to Cite

de la Vara-Garrido, F., Suárez-Torres, L., Fernández-Columbié, T., & Guzmán-Romero, E. (2022). Contact stress in the wear of a bearing of a steam turbine for electric generation. Ciencia & Futuro, 12(3), 356–370. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/2190

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)

1 2 3 > >>