Development and validation of an improved heat transfer calculation model for rough tubes

Autores/as

Palabras clave:

factor de fricción , coeficiente de transferencia de calor de rugosidad equivalente, desviación media, tubos rugosos, modelo cinético

Resumen

An improved method for heat transfer calculation inside rough tubes is provided. The model has been obtained from a second assessment developed early by the authors on fluid flow in single-phase inside rough tubes. The proposed correlation has been verified by comparison with a total of 1 666 experimental available data of 34 different fluids, including air, gases, water and organic liquids. The proposal model covers a validity range for Prandtl number ranging from 0.65 to 4.52x104 values of Reynolds number  from 2.4x103 to 8.32x106, a range of relative roughness ranging  from 5x10-2 to 2x10-6 and viscosity ratio from 0.0048 to 181.5. The proposed model provides a good correlation for 104≤Re and Re<104, with an average error    of 18.3% for 70.4% of the data and 16.6% for 74.8% of the data, respectively. The method presents a satisfactory agreement with the experimental data in each interval evaluated; therefore, the model can be considerate accurate enough for practical application. At the present time, in the available technical literature, a method with similar characteristics is unknown.  

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ataei-Dadavi, I.; Chakkingal, M.; Kenjeres, S.; Kleijn, Ch. R. and Tummers, M. J. 2019: Flow and heat transfer measurements in natural convection in coarse-grained porous media. International Journal of Heat and Mass Transfer, 130: 575-584.

Bhatti, M. S. and Shah, R. K. 1987: Turbulent and Transition Flow Convective Heat Transfer in Ducts. Handbook of Single-Phase Convective Heat Transfer. Kakac, S.; Shah, R. K. and Aung, W. (eds.) New York: Wiley-Interscience.

Bae, J. W.; Kim, W. K. and Chung, B. J. 2018: Visualization of natural convection heat transfer inside an inclined circular pipe. International Communications in Heat and Mass Transfer, 92: 15-22.

Bazán, F. S. V.; Bedin, L. and Bozzoli, F. 2016: Numerical estimation of convective heat transfer coefficient through linearization. International Journal of Heat and Mass Transfer, 102: 1230-1244.

Binu, T. V. and Jayanti, S. 2018: Heat transfer enhancement due to internal circulation within a rising fluid drop. Thermal Science and Engineering Progress, 8: 385-396.

Camaraza-Medina, Y.; Cruz-Fonticiella, O. M. and García-Morales, O. F. 2019: New model for heat transfer calculation during fluid flow in single phase inside pipes. Thermal Science and Engineering Progress, 11: 162-166.

Camaraza-Medina, Y.; Mortensen-Carlson, K.; Guha, P.; Rubio-González, A. M.; Cruz-Fonticiella, O. M. and García-Morales, O. F. 2019a: Suggested model for heat transfer calculation during fluid flow in single phase inside pipes (II). International Journal of Heat and Technology, 37(1): 257-266.

Camaraza-Medina, Y.; Sánchez-Escalona, A. A.; Cruz-Fonticiella, O. M.; García-Morales, O. F. 2019b: Method for heat transfer calculation on fluid flow in single-phase inside rough pipes. Thermal Science and Engineering Progress, 14: 100436.

Camaraza-Medina, Y.; Hernandez-Guerrero, A. and Luviano-Ortiz, J. L. 2020: Comparative study on heat transfer calculation in transition and turbulent flow regime inside tubes. Latin American Applied Research, 50(4): 309-314.

Camaraza-Medina, Y.; Hernandez-Guerrero, A.; Luviano-Ortiz, J. L. and Garcia-Morales, O. F. 2020: New improvement model for heat transfer calculation on viscous-gravitational fluid flow inside vertical and inclined tubes. International Journal of Heat and Mass Transfer, 159: 120108.

Cancan, Z.; Dingbiao, W.; Sa, X.; Yong, H. and Xu, P. 2017: Numerical investigation of heat transfer and pressure drop in helically coiled tube with spherical corrugation. International Journal of Heat and Mass Transfer, 113: 332-341.

Chen, Z. Y.; Cheng, M.; Liao, Q.; Ding, Y. D. and Zhang, J. N. 2019: Experimental investigation on the air-side flow and heat transfer characteristics of 3-D finned tube bundle. International Journal of Heat and Mass Transfer, 131: 506-515.

Gnielinski, V. 2013: On heat transfer in tubes. International

Journal of Heat and Mass Transfer, 63: 134-140. DOI:

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.04.015

Huang, D.; Wu, Z.; Sunden, B. and Li, W. 2016: A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress. Applied Energy, 162: 494-505.

Kumar, R.; Nadda, R.; Kumar, S.; Saboor, S.; Saleel, C. A.; Abbas, M. and Linul, E. 2023: Convective heat transfer enhancement using impingement jets in channels and tubes: A comprehensive review. Alexandria Engineering Journal, 70: 349-376.

Medina, Y. C.; Khandy, N. H.; Fonticiella, O. M. C. and Morales, O. F. G. 2017: Abstract of heat transfer coefficient modelation in single-phase systems inside pipes. Mathematical Modelling of Engineering Problems, 4(3): 126-131.

Medina, Y. C.; Fonticiella, O. M. C. and Morales, O. F. G. 2017: Design and modelation of piping systems by means of use friction factor in the transition turbulent zone. Mathematical Modelling of Engineering Problems, 4(4): 162-167.

Medina, Y. C.; Khandy, N. H.; Carlson, K. M.; Fonticiella, O. M. C. and Morales, O. F. C. 2018: Mathematical modeling of two-phase media heat transfer coefficient in air-cooled condenser systems. International Journal of Heat and Technology, 36(1): 319-324.

Mondal, S. and Field, R. W. 2018: Theoretical analysis of the viscosity correction factor for heat transfer in pipe flow. Chemical Engineering Science, 187: 27-32.

Petukhov, B. S. 1970: Heat transfer and friction in turbulent pipe

flow with variable physical properties. Advances in Heat Transfer, 6:

-564. DOI: https://doi.org/10.1016/S0065-2717(08)70153-9

Rabiee, R.; Desilets, M.; Proulx, P.; Ariana, M. and Julien, M. 2018: Determination of condensation heat transfer inside a horizontal smooth tube. International Journal of Heat and Mass Transfer, 124: 816-828.

Reis, M. C.; Sphaier, L. A.; Alves, L. S. and Cotta, R. M. 2018: Approximate analytical methodology for calculating friction factors in flow through polygonal cross section ducts. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40: 76.

Shankar, V. and Senadheera, S. 2024: Improved empirical convection heat transfer coefficient model to predict flexible pavement layer temperatures. Construction and Building Materials, 411: 134206.

Song, R.; Cui, M. and Liu, J. 2017: A correlation for heat transfer and flow friction characteristics of the offset strip fin heat exchanger. International Journal of Heat and Mass Transfer, 115: 695-705.

Thomas, J. A.; DeVincentis, B.; Janz, E. and Turner, B. 2024: A general approach for predicting convective heat transfer coefficients in turbulent systems. International Journal of Heat and Mass Transfer, 220: 124989.

Publicado

2024-06-30

Cómo citar

Camaraza-Medina, Y., Mortensen, M., & Blanco-Garcia, Y. (2024). Development and validation of an improved heat transfer calculation model for rough tubes. Minería Y Geología, 40(1), 25–45. Recuperado a partir de https://revista.ismm.edu.cu/index.php/revistamg/article/view/2470

Número

Sección

Artículos Originales