Distribución adimensional de la temperatura en tubos durante la conducción transitoria bajo condiciones convectivas

Autores/as

Palabras clave:

conducción transitoria, funciones de Bessel , temperatura adimensional

Resumen

Esta investigación propone seis soluciones analíticas para estimar el intercambio de energía por conducción transitoria en tuberías con condiciones de convección. Los modelos desarrollados fueron ajustados para un intervalo R1/RE   desde 0,2 a 0,8 y números adimensionales de Fourier (Fo) y Biot (Bi), desde 0,05 a 50 y 0,005 a 50, respectivamente. En cada caso fueron computadas 352 distribuciones de temperaturas mediante el método aproximado de Heisler (MH) y los modelos exactos, con diferentes combinaciones de R1/RE ; Bi ; Fo. Para la comparación entre las soluciones analíticas y el MH fueron realizadas 2 112 pruebas, revelándose que el MH correlaciona con el método analítico con una desviación media de ±10%  para el 70,4 % y de ±20 % para el 90,1 % de las combinaciones R1/RE  ; Bi ; Fo examinadas. El mejor ajuste se encuentra para el Caso 5, con una desviación media de ±10 % para el 80,3 % y ±20 % para el 91,8 % de los datos utilizados, mientras el peor ajuste se detecta en el Caso 2 con una desviación media de ±10 % y ±20 % para el 66,7 % y 87,4 % de los datos, respectivamente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Azis, M. I., Toaha, S., Hamzah, S., & Solekhudin, I. (2023). A numerical investigation of 2D transient heat conduction problems in anisotropic FGMs with time-dependent conductivity. Journal of Computational Science, 73, 102122.

Camaraza-Medina, Y., Sánchez-Escalona, A. A., Retirado-Mediaceja, Y., & García-Morales, O. F. (2020). Use of air cooled condenser in biomass power plants: a case study in Cuba. International Journal of Heat and Technology, 38(2), 425-431. https://scholar.google.es/scholar?cluster=10853232820124224025&hl=es&as_sdt=0,5#d=gs_cit&t=1730690170843&u=%2Fscholar%3Fq%3Dinfo%3Aht0fLdzBJbYJ%3Ascholar.google.com%2F%26output%3Dcite%26scirp%3D2%26scfhb%3D1%26hl%3Des

Can, N., & Keles, I. (2023). A practical jointed approach to transient hyperbolic heat conduction of FGM cylinders and spheres. Journal of Mechanical Science and Technology, 37(3), 1223-1231.

Cetin, B., Kuşcu, Y. F., Çetin, B., Tümüklü, Ö., & Cole, K. D. (2021). Semi-analytical source (SAS) method for 3-D transient heat conduction problems with moving heat source of arbitrary shape. International Journal of Heat and Mass Transfer, 165, 120692.

Chen, Z., Wang, G., Chen, H., & Mao, Z. (2023). Response spatiotemporal correlation and transient temperature field direct reconstruction for heat conduction system. International Journal of Heat and Mass Transfer, 216, 124609.

Gao, Q., & Nie, C. B. (2021). An accurate and efficient Chebyshev expansion method for large-scale transient heat conduction problems. Computers & Structures, 249, 106513.

Gawronska, E., Zych, M., Dyja, R., & Domek, G. (2023). Using artificial intelligence algorithms to reconstruct the heat transfer coefficient during heat conduction modeling. Scientific Reports, 13(1), 15343.

Gün, H., & Feng, W. Z. (2023). BEM for transient nonhomogeneous heat conduction in axisymmetric solids with heat source. Engineering Analysis with Boundary Elements, 157, 462-470.

Hua, Y. C., Zhao, T., & Guo, Z. Y. (2018). Optimization of the one-dimensional transient heat conduction problems using extended entransy analyses. International Journal of Heat and Mass Transfer, 116, 166-172.

Huang, D., Zhao, Y., Ye, K., Wu, F., Zhang, H., & Zhong, W. (2023). The efficient calculation methods for stochastic nonlinear transient heat conduction problems. Journal of Computational Science, 67, 101939.

Ji, X. L., Zhang, H. H., & Han, S. Y. (2023). Transient heat conduction modeling in continuous and discontinuous anisotropic materials with the numerical manifold method. Engineering Analysis with Boundary Elements, 155, 518-527.

Jin, G., Xing, H., Zhang, R., Guo, Z. & Liu, J. (2022). Data-driven discovery of governing equations for transient heat transfer analysis. Computational Geosciences, 26, 613–631.

Nicholas, T. E., Pernak, M. J., Scobie, J. A., Lock, G. D. & Tang, H. (2023). Transient heat transfer and temperatures in closed compressor rotors. Applied Thermal Engineering, 230, 120759.

Peng, P. P. & Cheng, Y. M. (2020). Analyzing three-dimensional transient heat conduction problems with the dimension splitting reproducing kernel particle method. Engineering Analysis with Boundary Elements, 121, 180-191.

Polyanin, A. D. & Nazaikinskii V. E. (2022). Handbook of linear partial differential equations for engineers and scientists. 3rd ed. CRC Press.

Tan, F., Tong, D., Liang, J., Yi, X., Jiao, Y. Y. & Lv, J. (2022). Two-dimensional numerical manifold method for heat conduction problems. Engineering Analysis with Boundary Elements, 137, 119-138.

Tong, D., Yi, X., Tan, F., Jiao, Y., & Liang, J. (2024). Three-dimensional numerical manifold method for heat conduction problems with a simplex integral on the boundary. Science China Technological Sciences, 67(4), 1007-1022.

Tourn, B. A., Hostos, J. C. Á. & Fachinotti, V. D. (2021). A modified sequential gradient-based method for the inverse estimation of transient heat transfer coefficients in non-linear one-dimensional heat conduction problems. International Communications in Heat and Mass Transfer, 127, 105488.

Tsega, E. G. (2022). Numerical Solution of Three‐Dimensional Transient Heat Conduction Equation in Cylindrical Coordinates. Journal of Applied Mathematics, 2022(1), 1993151.

Wang, C., Gu, Y., Qiu, L. & Wang, F. (2023). Analysis of 3D transient heat conduction in functionally graded materials using a local semi-analytical space-time collocation scheme. Engineering Analysis with Boundary Elements, 149, 203-212.

Wu, Q., Peng, M. J., Fu, Y. D. & Cheng, Y. M. (2021). The dimension splitting interpolating element-free Galerkin method for solving three-dimensional transient heat conduction problems. Engineering Analysis with Boundary Elements, 128, 326-341.

Wu, S., Zhang, Y. & Liu, S. (2021). Transient thermal dissipation efficiency based method for topology optimization of transient heat conduction structures. International Journal of Heat and Mass Transfer, 170, 121004.

Xu, D., Zheng, X., An, D., Zhou, C., Huang, X. & Li, R. (2022). New analytic solutions to 2D transient heat conduction problems with/without heat sources in the symplectic space. Applied Mathematics and Mechanics, 43(13), 1233-1248.

Yang, L., Zhang, J., He, R. & Lin, W. (2021). A dual interpolation precise integration boundary face method to solve two-dimensional transient heat conduction problems. Engineering Analysis with Boundary Elements, 122, 75-84.

Yu, B., Cao, G., Gong, Y., Ren, S. & Dong, C. (2021). IG-DRBEM of three-dimensional transient heat conduction problems. Engineering Analysis with Boundary Elements, 128, 298-309.

Zhang, Z.; Doner, N.; Long, Y. & Lou, C. (2023). Entropy and exergy analysis of coupled radiative heat transfer and heat conduction: A new thermodynamics approach. International Journal of Heat and Mass Transfer, 215, 124485.

Zhang, L., Kong, H. and Zheng, H. (2024). Numerical manifold method for steady-state nonlinear heat conduction using Kirchhoff transformation. Science China Technological Sciences, 67(4), 992-1006.

Zhang, Y., Rabczuk, T., Lu, J., Lin, S. & Lin, J. (2022). Space-time backward substitution method for nonlinear transient heat conduction problems in functionally graded materials. Computers & Mathematics With Applications, 124, 98-110.

Zhang, L. & Zheng, H. (2023). MLS-based numerical manifold method based on IPIM for 3D transient heat conduction of FGMs. International Journal of Heat and Mass Transfer, 217, 124704. https://www.sciencedirect.com/science/article/abs/pii/S0735193322005504

Zhuo, M. (2021). FE2 multi-scale framework for the two-equation model of transient heat conduction in two-phase media. International Journal of Heat and Mass Transfer, 179, 121683. https://link.springer.com/article/10.1007/s11431-022-2389-8

Zhou, L., Lv., J., Cui, M., Peng, H. and Gao, X. (2023). A polygonal element differential method for solving two-dimensional transient nonlinear heat conduction problems. Engineering Analysis with Boundary Elements, 146, 448-459. DOI:10.1016/j.enganabound.2023.07.024

Publicado

2024-12-01

Cómo citar

Camaraza-Medina, Y., Blanco-García, Y., & Retirado-Mediaceja, Y. (2024). Distribución adimensional de la temperatura en tubos durante la conducción transitoria bajo condiciones convectivas . Minería Y Geología, 40(4), 301–322. Recuperado a partir de https://revista.ismm.edu.cu/index.php/revistamg/article/view/2625

Número

Sección

Artículos Originales

Artículos más leídos del mismo autor/a

1 2 3 > >>