Determining ground subsidence using InSAR technology: San Antonio-San Vicente road case study

Authors

Keywords:

interferometry, SENTINEL-1, displacement estimation, SNAP, InSAR

Abstract

This research presents a scheme for determining ground subsidence using satellite images SENTINEL-1 and processing with SNAP software. Necessary steps for obtaining ground displacements are described, from the download of images in the Copernicus and Alaska platforms to the final export of results in formats that allow an easy interpretation. The San Antonio-San Vicente road, in Manabí (Ecuador) was analyzed as a case study, where the possibility of subsidence in the road infrastructure and surrounding buildings was evident. Displacement values were obtained for 2017-2024 period, using the proposed technological scheme, and graphical tools allowed presenting results that facilitate interdisciplinary analysis and timely decision making. The recorded displacements reached values up to 29 cm, causing cracks in the road structure. These results suggest the existence of a subsidence process in the study area, which is corroborated by visual inspections in several sections of the road, highlighting the importance of satellite monitoring for early detection and management of geological risk in infrastructures. 

Downloads

Download data is not yet available.

References

Besoya, M., Govil, H., & Bhaumik, P. (2020). Review on surface deformation evaluation using multitemporal SAR interferometry techniques. Spinger. https://doi.org/10.1007/s41324-020-00344-8.

Braun, A., & Veci, L. (2021). TOPS Interferometry Tutorial.

Chen, Y., Zhang, l., He, Y., Wang, W., & Yang, W. (2022). Ground deformation monitoring and analysis of Zhongchuan International Airport based on the time series InSAR of Sentinel-1A with ascending and descending orbits. Journal of Engineering Geology, 30(3), 803-816.

Delgado-Blasco, J. M., Foumelis, M., Stewart, C., & Hooper, A. (2019). Measuring urban subsidence in the Rome metropolitan area (Italy) with Sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sensing, 11(2), 129.

Di-Bisceglie, M., Di Santo, M., Galdi, C., Lanari, R., & Ranaldo, N. (2010). Synthetic aperture radar processing with GPGPU. IEEE Signal Processing Magazine, 27(2).

Diaz, D. E. H. (2016). Interferometría radar de apertura sintética (insar) aplicada al estudio del movimiento en laderas aledañas al volcan calbuco con ayuda de imágenes sentinel-1a. Universidad Técnica Federico Santa María, Santiago.

ESA. (2017). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation (TM-19, February 2007).

ESA. (2018). LAND SUBSIDENCE WITH SENTINEL-1 using SNAP. https://rus-copernicus.eu/portal/wp-content/uploads/library/education/training/HAZA03_Land-Subsidence_Mexico-city.pdf

ESA. (2021). Sentinel-1 Toolbox. TOPS Interferometry Tutorial. Updated june 2021.

Foumelis, M., Blasco, J., Desnos, Y., Engdahl, M., Fernández, D., Veci, L., & Wong, C. (2018). ESA SNAP-StaMPS integrated processing for Sentinel-1 persistent scatter interferometry. IEEE International Geoscience and Remote Sensing Symposium.

Guzmán-Acevedo, G., Quintana-Rodríguez, J., & Gasca-Zamora, H. (2020). Análisis del potencial de tecnología satelital InSAR para el monitoreo de la infraestructura carretera.

Hussain, M. A., Chen, Z., Shoaib, M., Shah, S. U., Khan, J., & Ying, Z. (2022). Sentinel-1A for monitoring land subsidence of coastal city of Pakistan using Persistent Scatterers In-SAR technique. Scientific Reports, 12(1), 5294.

Mancini, F., Grassi, F., & Cenni, N. (2021). A workflow based on SNAP–StaMPS open-source tools and GNSS data for PSI-Based ground deformation using dual-orbit sentinel-1 data: Accuracy assessment with error propagation analysis. Remote Sensing, 13(4), 753.

Martínez-Villar, J. (2005). Elaboración y análisis de imágenes radar desde satélite: Monitorización de deformaciones del terreno. Ingeniería Técnica de Telecomunicaciones, Universitat Politénica Catalunya, España.

Ojeda-Arzuza, A. D. (2021). Potencial de la Interferometría de Radar de Apertura Sintética (InSAR) para el análisis del desplazamiento del terreno: caso de estudio Barranquilla, Colombia. Universidad del Norte, Barranquilla, Colombia.

Palacios, D. G. (2019). Aplicación de la interferometría SAR satelital para la detección y monitoreo de los deslizamientos en la carretera escénica Tijuana-Ensenada, BC. (Maestría), Baja California, México.

Perissin, D., & Wang, T. (2011). The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. Proceedings of the ISRSE. Sidney, Australia.

Piter, A., Haghshenas-Haghighi, M., & Motagh, M. (2024). Challenges and Opportunities of Sentinel-1 InSAR for Transport Infrastructure Monitoring. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 1-19.

Raspini, F., Caleca, F., Del Soldato, M., Festa, D., Confuorto, P., & Bianchini, S. (2022). Review of satellite radar interferometry for subsidence analysis. Earth-Science Reviews, 235, 104239.

Rosen, P., Shams, K., Gurrola, E., Goerge, B., & Knight, D. (2012). InSAR scientific computing environment on the cloud. AGU Fall Meeting Abstract, 2012, IN31C-1508.

Ruiz-Armenteros, A., Delgado-Blasco, J. M., Bakon, M., Lamas-Fernández, F., Marchamalo-Sacristán, M., Gil-Cruz, A. J., ... & Sousa, J. (2023). Monitoring embankment dams from space using satellite radar interferometry: Case studies from RemoDams project. In 5th Joint International Symposium on Deformation Monitoring (JISDM 2022) (pp. 397-404).

Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Gmtsar: An insar processing system based on generic mapping tools.

SPA, S. I. (2018). Land Subsidence with Sentinel-1 using SNAP. (version 1.2). Retrieved from RUS Lectures at. https://rus-copernicus.eu/portal/the-rus-library/learn-by-yourself/

SNAP. (s.f.). Obtenido de https://step.esa.int/main/

Tao, W., Dai, L., Zhang, Z., Tang, B., & Yu, L. (2022). Stability Analysis Model of Expressway Passing through Goaf Based on SBAS-InSAR Technology. Mathematical Problems in Engineering.

Tomás, R. (2022). Aplicaciones de la interferometría radar de satélite en ingeniería civil. Universidad de Alicante, España.

Torres, R., Snoeji, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., & Rostan, F. (2012). GMES Sentinel-1 mission. Remote sensing of environment (120).

Xiao, B., Zhao, J., Li, D., Xi, W., Zhou, D., Gao, S., & Zhao, Z. (2021). The Subsidence Detection and Analysis Along Kunming Subway Network Based on SBAS-InSAR. In 2021 28th International Conference on Geoinformatics (pp. 1-8). IEEE.

Xing, X., Zhu, Y., Xu, W., Peng, W., & Yuan, Z. (2022). Measuring Subsidence Over Soft Clay Highways Using a Novel Time-Series InSAR Deformation Model With an Emphasis on Rheological Properties and Environmental Factors (NREM). IEEE Transactions on Geoscience and Remote Sensing, 60, 1-19.

Yu, H., Lan, Y., Yuan, Z., Xu, J., & Lee, H. (2019). Phase unwrapping in InSAR: A review. IEEE Geoscience and Remote Sensing Magazine, 7(1), 40-58.

Zebker, H. (2017). User-friendly InSAR data products: Fast and simple timeseries processing. IEEE Geoscience and Remote Sensing Letters, 14(11), 2122-2126.

Published

2025-03-07

How to Cite

Peralta-Delgado, J. A., Acosta-González, L. E., Vega-Ponce, E. C., Herrera-Blanco, W., & Pacheco-Gil, H. A. (2025). Determining ground subsidence using InSAR technology: San Antonio-San Vicente road case study. Minería & Geología, 41(1), 51–67. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/2702

Most read articles by the same author(s)