Obtaining nickel(II) hydroxide for rechargeable batteries from multi-component aqueous solutions: effect of synthesis conditions

Authors

Keywords:

nickel hydroxide, co-precipitation, Caron process, rechargeable batteries.

Abstract

Nickel(II) hydroxide is used in rechargeable batteries. This compound can be obtained from the sulfate solution resulting from the leaching of nickel sulphide that is obtained by processing lateritic ores by using Caron technology. The purpose of this work is to evaluate the influence of the variables: temperature, concentration of reagents, pH and stirring intensity, on the chemical-physical characteristics of nickel (II) hydroxide obtained by the way previously described. The chemical co-precipitation with ammonium and sodium hydroxides was used and the hydroxide was characterized, determining the chemical composition, the apparent density, the mineralogical phases as well as the specific surface area. Atomic absorption spectrophotometry, X-ray diffraction and the nitrogen adsorption method (BET) were the used techniques. It was determined that the evaluated variables have an similar effect to the results obtained with high purity nickel solutions, and they positively influence the nickel content in the hydroxide, the apparent density, and the specific surface area; It is obtained beta nickel hydroxide as the main mineralogical phase with satisfactory values of the studied properties, except the apparent density, for possible use in rechargeable batteries.

Downloads

Download data is not yet available.

Author Biography

Deisy Cisneros-Sánchez, Centro de Investigaciones del Níquel (CEDINIQ)

Investigadora Auxiliar, jefa de ProyectosUnidad de Proyectos Investigaciones. CEDINIQ

References

Benet, G. E.; Walker, C. T.; Fierro, C.; Fetcenko, M. A.; Sommers, B. y Zallen, A. 2002: U.S. Patent No. 6,444,363. Washington, DC: U.S. Patent and Trademark Office.

Cabañas, S. 2012: Síntesis asistida por ultrasonido de nanoestructuras de compuestos de níquel. Tesis doctoral. Universidad Autónoma de Madrid.

Chang, S.; Young, K. H.; Nei, J. y Fierro, C. 2016: Reviews on the US Patents regarding nickel/metal hydride batteries. Batteries, 2(2): 10.

Chen, J.; Bradhurst, D. H.; Dou, S. X. y Liu, H. K. 1999: Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. Journal of The Electrochemical Society, 146(10): 3606.

Cisneros, D.; Leyva, E. y Capote, N. 2015: Obtención de hidróxido de níquel a escala de laboratorio. Tecnología Química, 35(3): 308-321.

Fierro, C. 2012: Patente EP1323200 B1 Method of making a nickel hydroxide material.

Fierro, C.; Fetcenko, M. A.; Young, K.; Ovshinsky, S. R.; Sommers, B. y Harrison, C. 2007: U.S. Patent No. 7,294,434. Washington, DC: U.S. Patent and Trademark Office.

Freitas, M. B. J. G.; Silva, R. S.; Anjos, D. M.; Rozario, A. y Manoel, P. G. 2007: Effect of synthesis conditions on characteristics of the precursor material used in NiO· OH/Ni (OH) 2 electrodes of alkaline batteries. Journal of power sources, 165(2): 916-921.

ISO 18757. 2003: Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of specific surface area of ceramic powders by gas adsorption using the BET method.

ISO 23145-1(E). 2007: Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of bulk density of ceramic powders — Part 2. Suiza.

Ito, H.; Usui, T.; Shimakawa, M. and Iida, T. 2009: Patente US 7 585 435 B2 High density cobalt-manganese coprecipitated nickel hydroxide and process for its production. Tanaka Chemical Corporation: Japan.

Ito, T.; Tsuge, H.; Fujita, A. and Fukatani, M. 1999: Reactive crystallization of nickel hydroxide particles in continuos reactive crystallizer. In: 14th International Symposium on Industrial Crystallization. Warwickshire, UK: Institution of Chemical Engineers. ISBN 0 85295 424 7.

Kovalenko, V.; Kotok, V. and Bolotin, A. 2016: Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5-6(83): 17-22. ISSN 1729-3774.

Krynitz, U.; Naumann, D. y Olbrich, A. 1995: U.S. Patent No. 5,391,265. Washington, DC: U.S. Patent and Trademark Office.

Milne, R. 2015: Recuperación pulvimetalúrgica de aleación de magnesio AZ91D con fines estructurales. Proyecto Integrador. Universidad Nacional de Córdoba.

Nie, Z. R.; Ma, L. W. y Xi, X. L. 2014: Complexation–precipitation metal separation method system and its application in secondary resources. Rare Metals, 33(4): 369-378.

Olbrich, A.; Meese-Marktscheffel, J.; Stoller, V.; Erb, M.; Albrecht, S.; Gille, G.; ... y Jahn, M. 2009: U.S. Patent No. 7,563,431. Washington, DC: U.S. Patent and Trademark Office.

Shin, D. Y. 1996: Patente US 5,498,403 Method for preparing high density nickel hydroxide used for alkali rechargeable batteries. Estados Unidos.

Song, Q.; Tang, Z.; Guo, H. y Chan, S. L. I. 2002: Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values. Journal of Power Sources, 112(2): 428-434.

Sun, Y. K.; Lee, B. R.; Noh, H. J.; Wu, H.; Myung, S. T. y Amine, K. 2011: A novel concentration-gradient Li (Ni 0.83 Co 0.07 Mn 0.10) O 2 cathode material for high-energy lithium-ion batteries. Journal of Materials chemistry, 21(27): 10108-10112.

Van Bommel, A. and J. Dahn 2009: Synthesis of Spherical and Dense Particles of the Pure Hydroxide Phase Ni1∕ 3Mn1∕ 3Co1∕ 3 (OH) 2. Journal of the Electrochemical Society, 156(5): A362-A365.

Weiwei, E.; Cheng, J.; Yang, C. y Mao, Z. 2015: Experimental study by online measurement of the precipitation of nickel hydroxide: Effects of operating conditions. Chinese Journal of Chemical Engineering, 23(5): 860-867.

Yang, Y.; Huang, G.; Xie, M.; Xu, S. y He, Y. 2016: Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps. Hydrometallurgy, 165: 358-369.

Zhang, W.; Jiang, W.; Yu, L.; Fu, Z.; Xia, W. y Yang, M. 2009: Effect of nickel hydroxide composition on the electrochemical performance of spherical Ni (OH) 2 positive materials for Ni–MH batteries. International Journal of Hydrogen Energy, 34(1): 473-480.

Published

2020-02-04

How to Cite

Cisneros-Sánchez, D., Leyva-Navarro, E., García-Frómeta, L. A., & Capote-Flores, N. (2020). Obtaining nickel(II) hydroxide for rechargeable batteries from multi-component aqueous solutions: effect of synthesis conditions. Minería & Geología, 36(1), 65–80. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/art5_No1_2020

Most read articles by the same author(s)