Specific heat determination of lateritic ore by differential scanning calorimetry

Authors

Keywords:

specific heat, lateritic ores, differential scanning calorimetry

Abstract

To evaluate, design, or characterize any thermo physical process such as drying, the homonymous properties of materials involved in such process are decisive. Until now, in researches carried out on drying lateritic mineral, properties that are not specifically of this material have been used, therefore, in the present study its specific heat is established for temperature ranges between 20ºC to 100ºC and moisture concentrations of 3% and 37%. To this purpose, experimental technique called differential scanning calorimetry was used, in which it was obtained that the specific heat varies between 0.459 and 0.902 kJ / kg.ºC for sample with 3% humidity and 1.169 to 1.456 kJ / kg.ºC for samples with 37% humidity. In addition, equations that correlate the variation of specific heat as a function of temperature and humidity are established.

Downloads

Download data is not yet available.

References

Akash, M. S. H. & K. Rehman. 2020: Differential Scanning Calorimetry. In., p. 199-206.

Bachir, H. 2001: Balance térmico y de masa del secador # 3 en la empresa CMDTE Ernesto Guevara. ISMM Moa.

Castaño, L. F. C. 2003: Aportaciones al modelado y control de secaderos rotatorios. Tesis Doctoral. Universidad de Sevilla.

Castillo , U., Arioldis. 2007: Influencia de la humedad del mineral lateritico en el consumo de energía y combustible de los secadores cilindricos rotatorios. Tesis Ingeniería Universidad de Moa 2007.

Clas, S.-D., C. R. Dalton & B. C. Hancock. 1999: Differential scanning calorimetry: applications in drug development. Pharmaceutical Science & Technology Today, 1999/08/01/. 2(8): 311-320.

Delgado-Drubey, Y. 2013: Método de balance térmico y de masa para la evaluación del proceso de secado en cilindros rotatorios horizontales. Posgrado ISMM.

Díaz, B., Sandra Consuelo. 2016: Modelamiento cinético del procesamiento de minerales lateríticos de níquel por vía pirometalúrgica. Doctorado en Ingeniería- Ciencia y Tecnología de los Materiales Universidad Nacional de Colombia.

E1269-11, A. 2018: Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. In.: ASTM International, West Conshohocken, PA

Goyal, A. & A. Bushra. 2018: Modelling and Simulation of Rotary Dryer for Wheat drying. Journal of Postharvest Technology. 06(1): 63-68.

Hernández, W. N., F. J. Hernández, Z. Vargas, G. C. Rodríguez, et al. 2013: Coff grain rotary dryer optimization. Revista Mexicana de Ingeniería Química. 12(2): 315-325.

Krokida, M., D. Marinos-Kouris & A. Mujumdar. 2007: Rotary Drying, In Handbook of Industrial Dryin. Taylor & Francis:, Philadelphia.

Oliveira, S., C. Partiti & J. Enzweiler. 2001: Ocherous laterite: a nickel ore from Punta Gorda, Cuba. Journal of South American Earth Sciences. 1(14): 307-317.

Page, N., D. Bisset, G. Daly & E. Kisi. 1998: Ore cooler evaluation. Australia.

Ponce, D. L. C., R. , R. F. & R. A. García. 2018: Modelo matemático de un secadero rotatorio: secado de biomasa sólida lignocelulósica. Ingeniería Mecánica Tecnología Y Desarrollo. 6(2): 031 - 043

Retirado-Mediaceja, Y. 2012: Modelación matemática del proceso de secado natural de las menas lateríticas. Tesis de Doctorado. Instituto Superior Minero Metalúrgico de Moa "Dr. Antonio Núñez Jímenez".

Rindang, A., S. Panggabean & F. Wulandari. 2019: CFD Analysis of Temperature Drying Chamber at Rotary Dryer With Combined Energy. In I. PUBLISHING. Conf. Series: Journal of Physics:. 1155: 012037.

Rojas, A. 1995: Principales fases minerales portadores de níquel en los horizontes lateríticos. Tesis Doctorado ISMM.

Rojas, A. E. 2001: Evidencias a favor de que la Goethita es la fase principal portadora de níquel en los horizontes lateríticos. Minería & Geología. 18 (3-4): 21 - 31.

Sandoval, A., E. Aldana & A. Fernandez 2005: Aplicación del análisis por calorimetría diferencial de barrido (DSC) para la caracterización de las modificaciones del almidón,. DYNA. 72: 45–53.

Sierra, R. 2010: Optimización energética en el diseño de los transportadores de bandas utilizados en la industria del níquel. Doctorado ISMM.

Suriñach, S., M. D. Baro, S. Bordas, N. Clavaguera, et al. 1992: La calorimetría diferencial de barrido y su aplicación a la Ciencia de Materiales. Bol. Soc. Esp. Ceram. Vidr. 31(1): 11-17.

Torres, E., R. Galano, E. Fernández & A. García. 2000: Behavior of the entrainment of particles in the gases during the drying of the laterite ore in rotating cylindrical drums. Minería y Geología. 17(2): 73-77.

Zaccai, N., I. Serdyuk & J. Zaccai. 2018: Differential Scanning Calorimetry. In., p. 126-140.

Zalazar-Oliva, C., E. Góngora-Leyva, Y. Retirado-Mediaceja & A. A. Sánchez-Escalona. 2019: Determinación de la conductividad térmica de menas lateríticas a partir del método de Hot-Ball. Minería & Geología. 35 (4): 419-429.

Zalazar, C. O., E. L. Góngora, D. Haseldonckx, J. V. Caneghm , et al. 2019: Energetic and environmental analysis of the drying of mineral with the use of residual gases. Latin American Applied Research. 3(49): 13-17.

Published

2021-10-15

How to Cite

Zalazar Oliva, C., Góngora-Leyva, E., Legrá-Lobaina, A. A., Retirado-Mediaceja, Y., & Van Caneghem, J. (2021). Specific heat determination of lateritic ore by differential scanning calorimetry. Minería & Geología, 37(3), 318–332. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/art5_No3_2021

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>