Micro-structure of Joints made of Dissimilar Metals using Explosion Welding

Authors

  • Juan Ramón Castillo-Matos Departamento de Mecánica, Instituto Superior Minero Metalúrgico
  • Tomás Fernández-Columbié Departamento de Mecánica, Instituto Superior Minero Metalúrgico
  • Dayanis Alcántara-Borges Departamento de Mecánica, Instituto Superior Minero Metalúrgico
  • Isnel Rodríguez-González Departamento de Mecánica, Instituto Superior Minero Metalúrgico

Keywords:

explosion welding, dissimilar joint, microstructural behavior, AISI 1020 steel, AISI 1066 steel.

Abstract

The objective of this investigation is to establish the behaviour of the micro-structure of dissimilar joints made of titanium with AISI 1020, 1066 and 1008 steels through explosion welding. A detonation velocity of 2 800 m/s, a charge radius of 0,345 kg and a collision velocity of 1196, 16 m/s with an explosive volume of 600 cm3 and a density of 1,15 g/cm3 were considered. The microstructures obtained were composed of equiaxed ferrite grains, very fine grains of troostitic type and coarse grains with ferrite grid. Fine and aligned grains of ferrite type are observed in the casted area of both base materials. The metal hardness experienced an increase in samples from 120 HV AISI 1008 steel up to 250 HV for AISI 1066 steel. The AISI 1020 steel joint with titanium has an line shaped interface unlike the AISI 1008 steels with 4063 forms waves with uniform width, which provides a higher mechanical resistance associated with the ductility of the AISI 1008 steel.

Downloads

Download data is not yet available.

Author Biography

Juan Ramón Castillo-Matos, Departamento de Mecánica, Instituto Superior Minero Metalúrgico

Profesor del departamento de ingenieria mecánica,Técnico y especialista en ciencias e ingenieria de materiales, ensayos destructivos y no destructivo

References

ACARER, M.; GULENC, B. & FINDIK, F. 2003: Investigation of explosive welding parameters and their effects on microhardness and shear strength. Materials & Design 24(8): 659-664.

ACARER, M., GULENC, B.; FINDIK, F. 2004: The influence of some factors on steel/steel bonding quality on these characteristics of explosive welding joints. Journal of Materials Science 39(21): 6457-6466.

AL-HASSANI, S.; SALEM, S.; LAZARI, G. 1984: Explosive welding of flat plates in free flight. International Journal of Impact Engineering 1(2): 85-101.

BEN-ARTZY, A. 2010: Wave formation mechanism in magnetic pulse welding. International Journal of Impact Engineering 37(4): 397-404.

CARABALLO, M. A. & VINARDELL, C. 2004: Evaluación del comportamiento físico del acero Hadfield sometido a cargas explosivas. Minería y Geología 20(1-2): 95-101.

CELIK, A. & ALSARAN, A. 1999: Mechanical and structural properties of similar and dissimilar steel joints. Materials Characterization 43(11): 311-318.

DURGUTLU, A.; GULENC, B. & FINDIK, F. 2005: Examination of copper/stainless steel joints formed by explosive welding. Materials & Design 26(6): 497-507.

DURGUTLU, A.; OKUYUCU, H. & GULENC, B. 2008: Investigation of effect of the stand-off distance on interfaz characteristics of explosively welded copper and stainless steel. Materials & Design 29(7): 1480-1484.

FUKUI, Y. & INAMURA, T. 2004: Mechanical properties of a Ti-Nb-Al Shape Memory Alloys. Material Transaction 45(4): 1077-1085.

GARCÍA-JACOMINO, J.; BURGOS, J.; ÁLVAREZ, M. & GARCÍA, J. 2007: Efecto del tratamiento con explosivos sobre las tensiones residuales en uniones soldadas de acero al carbono. Revista de la Facultad de Ingeniería Universidad Central de Venezuela 22(2): 50-54.

GREENBERG, B.; IVANOV, M.; PATSELOV, A. & YU, P. 2012: The processes of fragmentation, intermixing and fusion upon explosion welding. Elsevier. AASRI Procedia 3(1): 66-72.

JINXIANG, Z.; KAISHIN, L.; KAI, Z.; XIAOJIE, L.; YING, L. & KAI, Z. 2005: A study on the relief of residual stresses in weldments with explosive treatment. International Journal of Solids and Structures 42(13): 3794-3806.

MADHUSUDAN, G. & SRINIVASA, R. 2009: Microstructure and mechanical properties of similar and dissimilar stainless steel electron beam and friction welds. International Journal of Advance Manufacturing Technology 45(5): 875-888.

MORIZONO, Y.; YAMAGUCHI, T. & TSUREKAWA, S. 2015: Aluminizing of High-carbon Steel by Explosive Welding and Subsequent Heat Treatment. ISIJ International 55(1): 272-277.

MOUSAVI, S. & SARTANGI, P. 2009: Experimental investigation of explosive welding of cp titanium/AISI 304 stainless steel. Materials & Design 30(3): 459-468.

PETUSHKOV, V. 2003: Peculiarities of explosion treatment of the circumferential weld on pipe filled with liquid. Paton Welding Journal 6(2): 14-16.

PETUSHKOV, V. G.; TITOV, V. A. & BRYZGALIN, A. G. 2002: Limiting thickness of welded joints to be explosion treated. Paton Welding Journal 1(3): 20-27.

WALSH, J.; SHREFFLER, R. & WILLIG, F. 1953: Limiting conditions for jet formation in high velocity collision. Journal of Apply Physics 24(3): 349-359.

Published

2017-04-11

How to Cite

Castillo-Matos, J. R., Fernández-Columbié, T., Alcántara-Borges, D., & Rodríguez-González, I. (2017). Micro-structure of Joints made of Dissimilar Metals using Explosion Welding. Minería & Geología, 33(2), 204–218. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/art6_No2_2017

Issue

Section

Metalurgia física

Most read articles by the same author(s)

1 2 3 > >>