Heat Exchange and Fouling Analysis on a Set of Hydrogen Sulphide Gas Coolers

Authors

  • Andrés Adrian Sánchez-Escalona Moa Nickel S.A. Pedro Sotto Alba
  • Ever Góngora-Leyva Instituto Superior Minero Metalúrgico Moa
  • Carlos Zalazar-Oliva Instituto Superior Minero Metalúrgico Moa
  • Edel Álvarez-Hernández Moa Nickel S.A. Pedro Sotto Alba.

Keywords:

hydrogen sulphide, heat exchanger, jacketed, heat transfer rates, fouling.

Abstract

The sulphide acid coolers are tube and shell jacketed heat exchangers designed to cool down the produced gas from 416,15 K to 310,15 K in addition to separate the sulphur carried over by the outlet gas from the reactor tower. The investigation was carried out by applying the passive experimentation process in an online cooler set in order to determine the heat transfer rates and fouling based on heat resistance. It was corroborated that the operation of this equipment outside design parameters increases outlet gas temperature and liquid sulphur carryovers. Efficiency loss is caused by fouling elements in the fluid, which results in changes in the overall heat transfer rate. The linear tendency of the fouling heat resistance based on time for three gas flowrates.

Downloads

Download data is not yet available.

Author Biography

Andrés Adrian Sánchez-Escalona, Moa Nickel S.A. Pedro Sotto Alba

Graduado de Ingeniería Mecánica en la UHOL, año 2002. Actualmente completando requisitos para obtener el título de Máster en Ciencias Técnicas. Más de 14 años de experiencia como ingeniero mecánico y administrador de proyectos. 7 años al frente del Dpto. Ingeniería Mecánica de la empresa mixta Moa Nickel S.A.

References

AL-HALLAF, W. A. A. 2013: Theoretical Study on Heat Transfer in the Presence of Fouling. Iraqi Journal of Chemical and Petroleum Engineering. 14(1): 47-53.

ARDSOMANG, T.; HINES, J. W. & UPADHYAYA, B. R. 2013: Heat Exchanger Fouling and Estimation of Remaining Useful Life. En: Annual Conference of Prognostics and Health Management Society. Memorias. Knoxville, Tennessee, Estados Unidos, 1-9.

CHOU, S.; OGDEN, J. M.; POHL, H. R.; SCINICARIELLO, F.; INGERMAN, L.; BARBER, L. & CITRA, M. 2014: Draft Toxicological Profile for Hydrogen Sulphide and Carbonyl Sulphide. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta, 317 p.

GHIWALA, T. M. & MATAWALA, V. K. 2014: Sizing of triple concentric pipe heat exchanger. International Journal of Engineering Development and Research. 2(2): 1683-1692.

KAKAÇ, S. & LIU, H. 2002: Heat exchangers. Selection, rating and thermal design. 2ed. CRC Press, New York. 491 p.

KERNER, J. 2011: Understanding Fouling. Chemical Engineering. Junio: 35-41.

KIMTANTAS, C. L. & TAYLOR, M. A. 2016: Downsizing a Claus Sulphur Recovery Unit. En: REFCOMM® (Refining Community). Presentación Bechtel Hydrocarbon Technology Solutions Inc. Galveston, Texas, Estados Unidos, 2-6 mayo, 1-36.

LINGE, P. M.; KORANE, A. B. & KAPATKAR, V. N. 2016: Performance Study of Triple Concentric Pipe Heat Exchanger. International Engineering Research Journal (IERJ). Ed. esp., Junio: 629-634.

MUKHERJEE, R. 2004: Practical Thermal Design of Shell-and-Tube Heat Exchangers. Begell House, Inc., Nueva York, 228 p.

PEIGNÉ, P.; INARD, C. & DRUETTE, L. 2013: Ventilation Heat Recovery from Wood-Burning Domestic Flues. A Theoretical Analysis Based on a Triple Concentric Tube Heat Exchanger. Energies. 6(-): 351-373.

RADULESCU, S.; NEGOITA, I. L. & ONUTU, I. 2015: Heat Transfer Coefficient for Hydrocracked Oil Flow in Laminar Regine through an Annular Space. Rev. Chim. (Bucarest). 66(1): 83-87.

SAURABH, D.; TAMKHADE, P. K. & LELE, M. M. 2016: Design Development and Heat Transfer Analysis of Triple Concentric Tube Heat Exchanger. International Journal of Current Engineering and Technology (IJCET). 5 :246-251.

TEMA. Standards of the Tubular Exchanger Manufacturers Association. TEMA, 9na ed. Nueva York: Tubular Exchanger Manufacturers Association, Inc., 2007.

THOME, J. R. 2010: Chapter 3 Single-Phase Shell-Side Flows and Heat Transfer. En: THOME, J. R. Engineering Data Book III. Wolverine Tube, Inc., Laussanne, Switzerland, 3-1–3-13.

TORRES-TAMAYO, E.; QUINTANA-CHARLOT, L. E.; VEGA-ÁRIAS, O. & RETIRADO-MEDIACEJA, Y. 2011: Coeficientes de transferencia de calor y pérdida de eficiencia en intercambiadores de calor de placas durante el enfriamiento del licor amoniacal. Minería y Geología. 27(2):67-83.

UNITEL. 2016: Hydrogen Sulphide (H2S) Production Technology. Unitel Technologies [en línea]. Consulta: 19 dic 2016. Disponible en: http://www.uniteltech.com/_literature_182468/Hydrogen_Sulfide_(H2S)_Production_Technology

YOUNGER, A. H. 2004: Sulphur Recovery. En: YOUNGER, A. H. Natural Gas Processing Principles and Technology – Part II. University of Calgary, Alberta. pp. 20-1–20-60.

Published

2017-07-10

How to Cite

Sánchez-Escalona, A. A., Góngora-Leyva, E., Zalazar-Oliva, C., & Álvarez-Hernández, E. (2017). Heat Exchange and Fouling Analysis on a Set of Hydrogen Sulphide Gas Coolers. Minería & Geología, 33(3), 326–340. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/art6_No3_2017

Issue

Section

Eficiencia energética

Most read articles by the same author(s)

1 2 > >>