Magnesium hydroxide recovery from brines in the argentine pune

Authors

  • Horacio Flores Universidad Nacional de Salta
  • Silvana Valdez Universidad Nacional de Salta
  • Agustina Orce Universidad Nacional de Salta

Keywords:

brines, recovery of magnesium hydroxide, salar de Pozuelos, chemical precipitation, sedimentation, filtration, flocculant.

Abstract

Exploitation of brines in Argentina with economical content of lithium generates magnesium hydroxide as a residue of the purification operations by chemical precipitation. This paper deals with the recovery of magnesium from brine samples, from salar de Pozuelos (Salta), concentrated by evaporation. The precipitation tests were carried out at room temperature (20 ºC), using calcium oxide as precipitator agent in stoichiometric quantities and in excess of 2 000 mL. The reaction progress was determined in a reactor of 2,5 L capacity; the agitation speed was constant and equal to 200 rpm. Samples of 100 mL were taken after 5, 15, 30, and 60 minutes; the solids were immediately separated by vacuum filtration and the magnesium content in the liquids was determined by atomic absorption spectrophotometry. The reaction progress degree is independent from the initial concentration of magnesium but dependent on the pH value reached after adding the precipitating agent. Brines with high magnesium content (> 5 000 ppm) generate pulps with low degrees of filterability after purifying, a characteristic that does not vary even with the addition of flocculants to facilitate the filtration operation.

Downloads

Download data is not yet available.

References

Baird, T.; Braterman, P. S. y Cochrane, H. D. 1988: Magnesium hydroxide precipitation as studied by gel growth methods. Journal of crystal growth, 91(4): 610-616.

Beck, R. y Andreassen, J. P. 2012: Influence of crystallization conditions on crystal morphology and size of CaCO3 and their effect on pressure filtration. AIChE Journal, 58(1): 107-121.

Beck, R.; Häkkinen, A.; Malthe-Sørenssen, D. y Andreassen, J. P. 2009: The effect of crystallization conditions, crystal morphology and size on pressure filtration of L-glutamic acid and an aromatic amine. Separation and Purification technology, 66(3): 549–558.

Bourcier, D.; Féraud, J. P.; Colson, D.; Mandrick, K.; Ode, D.; Brackx, E. y Puel, F. 2016: Influence of particle size and shape properties on cake resistance and compressibility during pressure filtration. Chemical Engineering Science, 144: 176–187.

Brown, T. L.; Le-May, H. R. Jr. y Bursten, B. E. 1998: Química: la ciencia central. 3 ed. Naucalpan de Juárez: Prentice-Hall Hispanoamericana. 68 p. ISBN: 9701701690.

Chang, R. 2002: Química. 7 ed. México: McGraw-Hill. 1001 p. ISBN: 970-10-3894-0.

Delbueno, V.; Such, T.; Toledo, E. y Jerez, D. 2017: Mercado del litio. Situación actual y perspectivas. Ministerio de Minería y Energía de la Nación, Buenos Aires, Argentina. Consulta: jul 2017. Disponible en: http://scripts.minem.gob.ar/octopus/archivos.php?file=7252

Gao, Y.; Wang, H.; Su, Y.; Shen, Q. y Wang, D. 2008: Influence of magnesium source on the crystallization behaviors of magnesium hydroxide. Journal of Crystal Growth, 310(16): 3771-3778.

Häkkinen, A. 2009: The Influence of Crystallization Conditions on the Filtration Characteristics of Sulphathiazole Suspensions. Lappeenranta University of Technology, Finland. Disponible en: http://www.doria.fi/handle/10024/50669

Hamzaoui, A. H.; M’nif, A.; Hammi, H. y Rokbani, R. 2003: Contribution to the lithium recovery from brine. Desalination, 158(1-3): 221-224.

Huang, H. 2008: Stabcal Software. University of Montana. Montana Tech, USA.

Li, X.; Shi, T.; Chang, P.; Hu, H.; Xie, J. y Liu, Y. 2014: Preparation of magnesium hydroxide flame retardant from light calcined powder by ammonia circulation method. Powder Technology, 260: 98-104.

Linke, W. F. 1965: Solubilities. American Chemical Society, Washington, D.C.

Tran, K. T.; Han, K. S.; Kim, S. J.; Kim, M. J. y Tran, T. 2016: Recovery of magnesium from Uyuni salar brine as hydrated magnesium carbonate. Hydrometallurgy, 160: 106–114.

Valdez, S.; Flores, H.; Orce, A. y Kwok, L. 2016: Influence of the evaporation rate over lithium recovery from brines. World Journal of Research and Review, 3(1): 66-70.

Wakeman, R. 2007: The influence of particle properties on filtration. Separation and Purification Technology, 58(2): 234–241.

Woong-An, J.; Jun-Kang, D.; Tran, K.; Jun-Kim, M.; Lim, T. y Tran, T. 2012: Recovery of lithium from Uyuni salar brine. Hydrometallurgy, 117–118: 64–70.

Yi, W.; Yan, C. y Ma, P. 2009: Removal of calcium and magnesium from LiHCO3 solutions for preparation of high-purity Li2CO3 by ion-exchange resin. Desalination, 249(2): 729–735.

Published

2018-04-04

How to Cite

Flores, H., Valdez, S., & Orce, A. (2018). Magnesium hydroxide recovery from brines in the argentine pune. Minería & Geología, 34(2), 210–222. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/art7_No2_2018

Issue

Section

Metalurgia extractiva