Alloy foundry for manufacturing automobile drums

Authors

  • Roberto Méndez-Cortina Universidad de Moa

Keywords:

brake drum, alloys, smelting.

Abstract

Metallographic characterization and hardness were performed based on the equilibrium compositions of the different phases in the interface areas of an alloy foundry of HF Fe 21 Ni type, to be used in manufacturing automobile drums. The chemical composition of the load materials composed of scrap and pig iron was established, where six test tubes were melted, three of them were subjected to annealing heat treatment in a muffle furnace at a temperature of 700 °C in one stage and air cooling. When calculating the solidification process, it was determined the smelter solidifies as hypoeutectic because it has carbon content <of 4.3. After analyzing the microstructural performance of foundry in raw, it shows a matrix of dendritic ferrite and perlite and after heat treatment; the matrix is ferrite with graphite. The obtained hardness in the untreated and thermally treated samples varies from an initial hardness of HV 494, influenced by 34.49% manganese sulphide, to HV 225 in the first one and in the second one by presenting a ferritic matrix.  

Downloads

Download data is not yet available.

Author Biography

Roberto Méndez-Cortina, Universidad de Moa

 

References

AGUNSOYE, J. 2013. Effect of Silicon Additions on the Wear Properties of Grey Cast Iron. Journal of Minerals and Materials Characterization and Engineering 1: 61-67.

DARDATI, P. 2005. Simulación micromecánica de la solidificación de la fundición dúctil. Universidad Nacional de Córdoba. España.

DARWISH, N. Y ELLIOT, R. 1993. Austempering of low Manganese Ductile Irons. Part 1: Processing Window. Materials Science and Technology 9: 572.

FLORES, M. 2010. Análisis de neumático por elementos finitos con vistas a la determinación de coeficientes de cargas dinámicas en estructuras de máquinas agrícolas. Revista Ciencias Técnicas Agropecuarias 19(4): 10-16.

KALPAKJIAN, S. 2008. Manufacturing Processes for Engineering Materials. 5 ed. Pearson Education.

KUMAR, V. Y KUMAR, A. 2012. Simulation of Cooling Rate of Gray Cast Iron Casting in a Sand Mold and Its Experimental Validation. Materials Science Forum 710: 208-213.

LACAZE, J. Y GERVAL, V. 1998. Modeling of the Eutectoid Reaction in Spheroidal Graphite Fe-C-Si Alloys. ISIJ International 38(7): 714-722.

LARRAÑAGA, P. Y SERTUCHA, J. 2010. Estudio Térmico y Estructural del Proceso de Solidificación de Fundiciones de Hierro con Grafito Laminar. Revista de Metalurgia 46(4): 370-380.

LIN, T. 2003. Effect of silicon content on intergranular embrittlement of ferritic spheroidal graphite cast iron suffered from cyclic heating. Materials Transactions 44(1): 173-180.

SHAHA, S. 2010. Prediction of Heat Flow Through Sand Mould and its Verification on the Structure and Property of Gray Cast Iron. International Journal of Mechanical and Materials Engineering 5(2): 208-213.

SHOWMAN, R. Y AUFDERHEIDE, R. 2004. Controlling Nodularity in Thin-Wall Compacted Graphite Iron Castings. American Foundry Society, Dublin, Ohio.

SOMMERFELD, A. 2008. Graphite Nucleation in Cast Iron Melts Based on Solidification Experiments and Microstructure Simulation. Journal of Materials Science and Technology 24(3): 321-324.

VELEZ, I. 1996. Effect of silicon on kinetics of bainitic reaction in austempered ductile cast iron. Materials science and technology 12: 329.

ZHAO, H. Y LIU, B. 2001. Modeling of Stable and Metastable Eutectic Transformation of Spheroidal Graphite Iron Casting. ISI J. International 41(9): 986-991.

Published

2019-10-22

How to Cite

Méndez-Cortina, R. (2019). Alloy foundry for manufacturing automobile drums. Ciencia & Futuro, 9(3), 46–62. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/1834

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)