Determination of the metallurgic properties of cast steel AISI 1545

Authors

  • Ariana Rodríguez-Suárez Universidad de Moa
  • Tomás Fernández-Columbié Universidad de Moa
  • Anabael Ruiz-Padilla Universidad de Moa
  • Eider Sánchez-Olivero Universidad de Moa

Keywords:

microstructure, pearlit, ferrite, hardness, casting process.

Abstract

The metallurgical properties of AISI 1545 steel, obtained by the casting process to be used in the manufacture of the tires and rollers of the Jacoby rotary conveyor, were determined. Three samples obtained in the casting process were analyzed. The microstructures present pearlitic, austenitic, ferritic and manganese sulfide structures, in which pearlite is between 42.6 and 46.63% in samples 2 and 3, as the predominant phase, preceded by the ferrite phase, which are associated with the chemical elements carbon, chromium and molybdenum that are alphagenic elements; manganese sulfide (MnS) is the most noticeable in sample 1, with a value of 36.77%. The determined hardness is 179.6 HV for sample 1, 286.3 HV for sample 2 and 281.3 HV for sample 3.

Downloads

Download data is not yet available.

References

ASKELAND, D. & WRIGHT, W. 2016. Ciencia e Ingeniería de Materiales. Cengage Learning Editores, Ciudad de México.

BADESHIA, H. & HONEYCOMBE, R. 2006. Steels. Butterworth-Heinemann, Oxford, UK.

BORSATO, T.; BERTO, F.; FERRO, P. & CAROLLO, C. 2016. Effect of in-mould inoculant composition on microstructure and fatigue behaviour of heavy section ductile iron castings. Procedia Structural Integrity 2(1): 3150-3157.

DYJA, R.; GAWRONSKA, E. & SCZYGIOL, N. 2015. The effect of mechanical interactions between the casting and the mold on the conditions of heat dissipation: a numerical model. Archives of Metallurgy and Materials 60(3): 1901-1910.

GAWRONSKA, E. SCZYGIOL, N. & DUBOW, E. 2016. Numerical modeling of equiaxed structure forming in the cast during alloy solidification. Procedia Engineering 136(13): 101-107.

INGLE, P. & NARKHEDE, B. 2018. A literature survey of methods to study and analyze the gating system design for its effect on casting quality. Materials Today: Proceedings 5(2): 5421-5429.

KALPAKJIAN, S. & SCHMID, S. 2008. Manufactura, Ingeniería y Tecnología. Pearson Educación, Londres.

LEKAKH, S. 2015. High strength ductile iron produced by the engineered cooling: process concept. International Journal of Metal casting 9(2): 21-30.

LIU, J. & KOU, S. 2015. Effect of diffusion on susceptibility to cracking during solidification. Acta Materialia 100 (10): 359-368.

MARSHALL, D.; NOMA, T. & EVANS, A. 1982. A Simple Method for Determining Elastic Modulus to Hardness Communications of the American Ceramic Ratios using Knoop Indentation Measurements. Society 65(10): 175-176.

OLIVER, W. & PHARR, G. 2004. Review: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19(1): 3-20.

RODRÍGUEZ, A.; FERNÁNDEZ, T.; RODRÍGUEZ, I. 2018. Solidificación y microestructura de un acero al manganeso obtenido por fundición. Minería y Geología 34(1): 494-503.

Published

2022-02-28

How to Cite

Rodríguez-Suárez, A., Fernández-Columbié, T., Ruiz-Padilla, A., & Sánchez-Olivero, E. (2022). Determination of the metallurgic properties of cast steel AISI 1545. Ciencia & Futuro, 12(1), 47–59. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/2130

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)

<< < 1 2 3 > >>