Determination of finite element welding stresses in a tubular joint

Authors

  • Diolvis Leyva-Heredia Empresa Mecánica del Níquel, Cuba
  • Geovannis Martínez-Ruiz Universidad de Moa
  • Ledennis Suárez-Torres Universidad de Moa

Keywords:

pipe, tensions, deformation, finite elements, stainless steel.

Abstract

Welding stresses were determined in a pipe joint made of AISI 316 austenitic steel through resistance calculations and the finite element method (FEM). From 250 mm diameter pipes, the stresses generated by the temperatures were considered, as well as the equivalents and the deformations. It was determined that, from the chemical composition of the resulting cord where the alphagenous and ganmangenous elements were analyzed, that the solidification is of Ferrite-Austenite, that the stresses and deformations determined, resist temperatures and working pressures, all together do not cause the phenomenon of breakage in the pipe joint. The results were corroborated through the finite element method (FEM) where it was verified that said stresses do not exceed the yield limit of the base material and that the existing deformations are produced by the temperature and the working pressure. 

Downloads

Download data is not yet available.

References

ABEDI, S. 2017. Failure investigation of a defective weldment of an oil product transmission pipeline. Journal of failure Analysis and prevention 17(1): 30-37.

AGUILAR, S.; TABARES, J. & SERNA, C. 2013. Microstructural transformations of dissimilar austenite-ferrite stainless steels welded joints. Journal of Materials Physics and Chemistry 1(4): 65-68.

ASTA, E.; RÍOS, J. & CAMBIASSO, F. 2018. Análisis comparativo en la determinación de ferrita delta para aceros inoxidables austeníticos. Matéria 23(2): 1-11.

BAO, R. & ZHANG, X. 2010. An inverse method for evaluating weld residual stresses via fatigue crack growth test data. Engineering Fracture Mechanics 77(7): 3143-3156.

CRAIG, J. 2002. Mecánica de Materiales. Ed. Prentice Hall, Nueva Jersey.

DAVID, S. 1981. Ferrite morphology and variations in ferrite content in austenitic stainless-steel welds. Welding Journal 60(4): 63 71.

DAVIS, J. 2014. Metals handbook desk edition, 2nd Edition. Stainless steels. Ohio, Estados Unidos.

FERNÁNDEZ-COLUMBIÉ, T.; RODRÍGUEZ, I.; ALCÁNTARA, D.; SALAZAR, A. & ABAD, A. 2016. Caracterización microestructural de uniones soldadas de acero AISI 316L en tuberías. Minería y Geología 32(1): 60-75.

FERNÁNDEZ-COLUMBIÉ, T.; SUÁREZ-TORRES, L. & RODRÍGUEZ-GONZÁLEZ, I. 2021. Influencia de la temperatura en la soldadura de unión disímil mediante proceso de gas y tungsteno. Revista de Iniciación Científica 7(1): 24-29.

GARCÍA, Y. & BURGOS, J. 2007. Procedure for the obtaining by means of MEF of the thermal fields, deformations and residual tensions in welded unions. Revista Técnica de la Facultad de Ingeniería Universidad de Zulia 30(1): 13-22.

GAUL, H.; WEBER, G. & RETHMEIER, M. 2011. Evaluation of fatigue crack propagation in spot welded joints by stiffness measurements. International Journal of Fatigue 33(5): 740-755.

KOTECKI, D. & SIEWERT, T. 1992. WRC-1992 constitution diagram for stainless steels weld metals. Welding Journal 71(5): 181-191.

KOU, S. 2003. Welding metallurgy. John Wiley & Sons, USA.

MARULANDA, J.; BURBANO, V. & PELÁEZ, J. 2013. Análisis de soldabilidad de aceros inoxidables con aceros de medio y bajo carbono por SMAW. Revista Facultad de Ingeniería, UPTC 22(35): 91-100.

RAMÍREZ-SOTO, J.; SALGADO, J.; PÉREZ, J.; PÉREZ, T.; TERÁN, J. & MARTÍNEZ, M. 2016. Efecto del mantequillado en las propiedades mecánicas de uniones soldadas disímiles en barras de refuerzo para estructuras de concreto. Revista ALCONPAT 6(3): 248-260.

SRIVASTAVA, A.; PONSON, L.; OSOVSKI, S.; BOUCHAUD, E.; TVRGAARD, V.; RAVI CHANDAR, K. & NEEDLEMAN, A. 2015. The effect of loading rate on ductile fracture toughness and fracture surface roughness. Journal of Mechanics and Physics of Solids 76(7): 20-46.

Published

2022-11-28

How to Cite

Leyva-Heredia, D., Martínez-Ruiz, G., & Suárez-Torres, L. (2022). Determination of finite element welding stresses in a tubular joint. Ciencia & Futuro, 12(4), 474–485. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/2218

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)

<< < 1 2