Obtaining metallic aluminum foams through the vacuum infiltration process

Authors

  • Bruno Cuevas-Lozano Universidad de Oriente
  • Ángel E. Mascarell-Batista Universidad de Oriente

Keywords:

metallic foam, vacuum infiltration, soluble, soluble particles, sodium chloride.

Abstract

The casting method with vacuum infiltration in a bed of soluble particles was evaluated to obtain open-pore aluminum metal foams with different pore sizes. Sodium chloride (NaCl) grains with grain sizes of 560–1120 μm and 1120–2240 μm were used as soluble particles, which allowed evaluating the variation of the relative density and the degree of porosity of the foams as a function of the grain size variation. To obtain the foams, an open mold was used, inside which the infiltration of aluminum into the bed of particles takes place. The vacuum is practiced in the mold through a conduit placed in the lower part of the same and the molten aluminum is poured through the upper part of the mold. The obtained open-cell metallic foams present irregular pores and an average density of 0.308 and 0.246 and porosity of 0.7545 and 0.692 for NaCl particle sizes of 560–1120 μm and 1120–2240 μm respectively, both with a high degree of of porosity (10 pores per square inch). This could be due to the wide range of particle sizes used, which denotes that a certain amount of pores would have finer ligaments and cell walls than others, therefore requiring less amount of metal. 

Downloads

Download data is not yet available.

References

ABARCA, P., CASTILLO, M., BRAVO, D. & SÁNCHEZ, F. (2018). Obtención de espumas metálicas de aluminio por el método de infiltración en preformas lixiviables. Ciencia Digital, 2(2), 343-355.

AN, Y., FEI, H., ZENG, G., XU, X., CI, L., XI, B., XIONG, S., FENG, J. & QIAN, Y. (2018). Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries. Nano Energy, 47, 503-511.

ASHBY, EVANS, A. G., FLECK, N. A., GIBSON, L. J., HUTCHINSON, J. W. & WADLEY, H. (2002). Metal foams: A design guide. Butterworth-Heinemann. Massachusetts, USA.

BANGASH, M. K., UBERTALLI, G., DI SAVERIO, D., FERRARIS, M. & JITAI, N. (2018). Joining of aluminium alloy sheets to aluminium alloy foam using metal Glasses. Metals, 8(8), 614.

BANHART, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559-632.

FERNÁNDEZ, P., TORRES, G., CRUZ, J., GAVIRIA, S. & OCHOA, E. (2007). Fabricación de metales celulares base aluminio. Scientia et Technica, 1(36).

GARCÍA-MORENO, F. (2016). Commercial applications of metal foams: Their properties and production. Materials, 9(2), 85.

GOPINATHAN, A., JERZ, J., KOVÁČIK, J. & DVORÁK, T. (2021). Investigation of the Relationship between Morphology and Thermal Conductivity of Powder Metallurgically Prepared Aluminium Foams. Materials, 14, 3623.

GÜNER, A., ARIKAN, M. M. & NEBIOGLU, M. (2015). New approaches to aluminum integral foam production with casting methods. Metals, 5(3), 1553-1565.

HAJIZADEH, M., YAZDANI, M., VESALI, S., KHODARAHMI, H. & MOSTOF, T. M. (2021). An experimental investigation into the quasi-static compression behavior of open-cell aluminum foams focusing on controlling the space holder particle size. Journal of Manufacturing Processes, 70: 193–204.

HASSANLI, F. & PAYDAR, M. H. (2021). Improvement in energy absorption properties of aluminum foams by designing pore-density distribution. Journal of Materials Research and Technology, 14, 609-619.

HUSSAIN, Z. & SUFFIN, N. (2011). Microstructure and mechanical behaviour of aluminium foam produced by sintering dissolution process using NaCl space holder. Jornal of Enginering Science, 7, 37-49.

IRAUSQUIN, I. A. (2012). Caracterización mecánica de espumas metálicas y su aplicación en sistemas de absorción de energía. Tesis de Doctorado. Universidad Carlos III de Madrid, Madrid, España.

KHARE, S. & SORTE, M. (2021). An Overview of Aluminum Foam Production Methods. International Journal of Engineering Science and Computing, 11(02), 27659- 27666.

MAHADEV, M., SREENIVASA, C. G. Y SHIVAKUMAR, K. M. (2018). A Review on Production of Aluminium Metal Foams. In Materials Science and Engineering Conference Series, 376(1), 012081.

NEBREDA, J. (2014). Optimización de la estructura celular en espumas de aluminio. Tesis de Doctorado. Universidad de Valladolid, Valladolit, España.

NJOKU, R. E. (2022). Evaluation of the Heat Transfer Performance of Stearic Acid PCM/Porous Aluminium Thermal Composite Structures for Heat Storage Applications. Mediterranean Journal of Basic and Applied Sciences (MJBAS), 6(2), 74-84.

SINGH, S. & BHATNAGAR, N. (2018). A survey of fabrication and application of metallic foams (1925–2017). Journal of Porous Materials, 25(2), 537-554.

SUN, X., HUANG, P., ZHANG, X., HAN, N., LEI, J., YAO, Y. & ZU, G. (2019). Densification Mechanism for the Precursor of AFS under Different Rolling Temperatures. Materials, 12(23), 3933.

TAN, W. C., SAW, L. H., SAN THIAM, H., XUAN, J., CAI, Z. & YEW, M. C. (2018). Overview of porous media/metal foam application in fuel cells and solar power systems. Renewable and Sustainable Energy Reviews, 96, 181-197.

TRIPATHI, O., SINGH, D. P., DWIVEDI, V. K. & AGARWAL, M. (2021). A focused review on aluminum metallic foam: Processing, properties, and applications. Materials Today: Proceedings, 47, 6622-6627.

UBERTALLI, G., & FERRARIS, S. (2020). Al-Based Metal Foams (AMF) as Permanent Cores in Casting: State-of-the-Art and Future Perspectives. Metals, 10(12), 1592.

Published

2023-03-01

How to Cite

Cuevas-Lozano, B., & Mascarell-Batista, Ángel E. (2023). Obtaining metallic aluminum foams through the vacuum infiltration process. Ciencia & Futuro, 13(1), 25–40. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/2249

Issue

Section

Ciencia Universitaria