Modeling of the compression behavior of a sandwich panel with a honeycomb structure
Keywords:
cell panel, hexagonal panel, materials simulation, Von Mises tensionAbstract
The compression behavior of a sandwich panel based on a millimeter honeycomb structure was modeled using the Finite Element Method (FEM). For the modeling process, AA7075-T6 aluminum was selected due to the wide applications that this material has in the addictive manufacturing of different types of parts with diverse applications. Different pressure values were applied to evaluate the influence that this variable has on the deformation, displacements and stresses acting on the honeycomb structure. The design of the parts was carried out using the professional software SolidWorks version 2020 PREMIUM, which contains a modeling package that uses the FEM for the modeling of parts subjected to different loading conditions. The results allowed us to determine that the millimeter honeycomb structure, modeled in this work, is capable of absorbing loads of up to 30 MPa without suffering appreciable deformations, even when the yield limit of the material and the safety factor of the structure reach are exceeded values less than one. The simulation carried out allowed us to determine the zones of linear-elastic regime and post-yield stress and densification of the panel based on a honeycomb structure.Downloads
References
Afshar, M., Anaraki, A. P., Montazerian, H. & Kadkhodapour, J. (2016). Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures. Journal of the mechanical behavior of biomedical materials, 62, 481-494. http://doi.org.10.1016/j.jmbbm.2016.05.027.
Benedetti, M., Du Plessis, A., Ritchie, R. O., Dallago, M., Razavi, S. M. J. & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering: R: Reports, 144, 100606. http://doi.org.10.1016/j.mser.2021.100606.
Cormos, R., Petrescu, H., Hadar, A., ADIR13, G. M. & Gheorghiu, H. (2017). Finite Element Analysis of the Multilayered Honeycomb. Materiale Plastice, 54(1), 180.
Du Plessis, A., Razavi, N., Benedetti, M., Murchio, S., Leary, M., Watson, M., Bhate, D. & Berto, F. (2022). Properties and applications of additively manufactured metallic cellular materials: A review. Progress in Materials Science, 125, 100918.
Dutta, A., Pal, S. K. & Panda, S. K. (2023). A novel method of fabricating aluminium honeycomb core by friction stir welding. Thin-Walled Structures, 111262.
Gorguluarslan, R. M., Gandhi, U. N., Mandapati, R. & Choi, S. K. (2016). Design and fabrication of periodic lattice-based cellular structures. Computer-Aided Design and Applications, 13(1), 50-62. https://doi.org.10.1080/16864360.2015.1959194.
Hedayati, R., Sadighi, M., Mohammadi Aghdam, M. & Zadpoor, A. A. (2016). Mechanical properties of additively manufactured thick honeycombs. Materials, 9(8), 613.
Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O. & Brandt, M. (2019). SLM lattice structures: Properties, performance, applications and challenges. Materials & Design, 183, 108137. https://doi.org.10.1016/j.matdes.2019.108137.
Mohammadi, H., Ahmad, Z., Petrů, M., Mazlan, S. A., Johari, M. A. F., Hatami, H. & Koloor, S. S. R. (2023). An insight from nature: honeycomb pattern in advanced structural design for impact energy absorption. Journal of Materials Research and Technology, 22, 2862-2887. https://doi.org.10.1016/j.mrt.2022.12.063.
Nadkarni, I., & Satpute, P. (2021). Experimental and numerical investigation of out-of-plane crushing behaviour of aluminium honeycomb material. Materials Today: Proceedings, 38(1), 313-318. https://doi.org.10.1016/j.matpr.2020.07.378.
Nayak, S. K. (2010). Optimization of honeycomb core sandwich panel to mitigate the effects of air blast loading. (Tesis de Grado, The Pennsylvania State University). USA.
Orrego-Caicedo, C. J. (2014). Simulación por medio de elementos finitos del comportamiento de honeycombs de aluminio sometidos a compresión cuasi-estática. (Tesis de Grado, Universidad de los Andes).
Palomba, G., Epasto, G., Sutherland, L. & Crupi, V. (2022). Aluminium honeycomb sandwich as a design alternative for lightweight marine structures. Ships and Offshore Structures, 17(10), 2355-2366. https://doi.org.10.1080/17445302.2021.1996109.
Raghavendra, S., Molinari, A., Fontanari, V., Dallago, M., Luchin, V., Zappini, G. & Benedetti, M. (2020). Tension-compression asymmetric mechanical behaviour of lattice cellular structures produced by selective laser melting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(16), 3241-3256.
Rupani, S. V., Acharya, G. & Jani, S. S. (2017). Design, modelling and manufacturing aspects of honeycomb sandwich structures: a review. International Journal of Scientific Development and Research, 2(4), 526-532.
Thomas, T. & Tiwari, G. (2019). Crushing behavior of honeycomb structure: a review. International Journal of Crashworthiness, 24(5), 555-579. https://doi.org.10.1080/13588265.2018.1480471.
Uğur, L., Duzcukoglu, H., Sahin, O. S. & Akkuş, H. (2020). Investigation of impact force on aluminium honeycomb structures by finite element analysis. Journal of Sandwich Structures & Materials, 22(1), 87-103. http://doi.org.10.1177/1099636217733235.
Wang, Z. (2019). Recent advances in novel metallic honeycomb structure. Composites Part B: Engineering, 166, 731-741. http://doi.org.10.1016/compositesb.2019. 02.011.
Wang, Z., Yao, S., Lu, Z., Hui, D. & Feo, L. (2016). Matching effect of honeycomb-filled thin-walled square tube-experiment and simulation. Composite Structures, 157, 494-505.
Xu, S., Beynon, J. H., Ruan, D. & Lu, G. (2012). Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Composite Structures, 94(8), 2326-2336. http://doi.org.10.1016/j.compstruct.2012.02.024.
Zhang, Y., Li, Y., Guo, K. & Zhu, L. (2021). Dynamic mechanical behaviour and energy absorption of aluminium honeycomb sandwich panels under repeated impact loads. Ocean Engineering, 219: 108344. http://doi.org.10.1016/j.oceaneng.2020.108344.
Zhang, X., Zhang, H. & Wen, Z. (2014). Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations. International Journal of Impact Engineering, 66, 48-59. http://doi.org.10.1016/j.ijimpeng.2013.12.0089.
Published
How to Cite
Issue
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Esta obra está bajo una Licencia Creative Commons Reconocimiento-NoComercial 4.0 Internacional
La Revista Ciencia & Futuro es una revista de acceso abierto, todo el contenido está disponible gratuitamente sin cargo para el usuario o su institución. Los usuarios pueden leer, descargar, copiar, distribuir, imprimir, buscar o vincular los textos completos de los artículos, o utilizarlos para cualquier otro fin lícito, sin pedir permiso previo al editor o al autor. Todo lo anterior, de acuerdo con la definición de BOAI de acceso abierto.
Los autores que publican en esta revista están de acuerdo con los siguientes términos: Licencia Creative Commons Atribución-NoComercial permite que el beneficiario de la licencia tenga el derecho de copiar, distribuir, exhibir y representar la obra y hacer obras derivadas para fines no comerciales siempre y cuando reconozca y cite la obra de la forma especificada por el autor o el licenciante. Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista. Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés). Lo anterior debe realizarse siempre sobre el artículo ya publicado por Ciencia & Futuro.
Los autores mantienen el control sobre la integridad de sus trabajos y el derecho a ser adecuadamente reconocidos y citados.
A los editores se les otorgan derechos no exclusivos para publicar y distribuir.