Modeling of the compression behavior of a sandwich panel with a honeycomb structure

Authors

  • Bruno Cuevas-Lozano Universidad de Oriente
  • Maritza Mariño-Cala Universidad de Oriente
  • Yanier Sánchez-Hechavarría Universidad Federal de Bahía

Keywords:

cell panel, hexagonal panel, materials simulation, Von Mises tension

Abstract

The compression behavior of a sandwich panel based on a millimeter honeycomb structure was modeled using the Finite Element Method (FEM). For the modeling process, AA7075-T6 aluminum was selected due to the wide applications that this material has in the addictive manufacturing of different types of parts with diverse applications. Different pressure values were applied to evaluate the influence that this variable has on the deformation, displacements and stresses acting on the honeycomb structure. The design of the parts was carried out using the professional software SolidWorks version 2020 PREMIUM, which contains a modeling package that uses the FEM for the modeling of parts subjected to different loading conditions. The results allowed us to determine that the millimeter honeycomb structure, modeled in this work, is capable of absorbing loads of up to 30 MPa without suffering appreciable deformations, even when the yield limit of the material and the safety factor of the structure reach are exceeded values less than one. The simulation carried out allowed us to determine the zones of linear-elastic regime and post-yield stress and densification of the panel based on a honeycomb structure.

Downloads

Download data is not yet available.

References

Afshar, M., Anaraki, A. P., Montazerian, H. & Kadkhodapour, J. (2016). Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures. Journal of the mechanical behavior of biomedical materials, 62, 481-494. http://doi.org.10.1016/j.jmbbm.2016.05.027.

Benedetti, M., Du Plessis, A., Ritchie, R. O., Dallago, M., Razavi, S. M. J. & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering: R: Reports, 144, 100606. http://doi.org.10.1016/j.mser.2021.100606.

Cormos, R., Petrescu, H., Hadar, A., ADIR13, G. M. & Gheorghiu, H. (2017). Finite Element Analysis of the Multilayered Honeycomb. Materiale Plastice, 54(1), 180.

Du Plessis, A., Razavi, N., Benedetti, M., Murchio, S., Leary, M., Watson, M., Bhate, D. & Berto, F. (2022). Properties and applications of additively manufactured metallic cellular materials: A review. Progress in Materials Science, 125, 100918.

Dutta, A., Pal, S. K. & Panda, S. K. (2023). A novel method of fabricating aluminium honeycomb core by friction stir welding. Thin-Walled Structures, 111262.

Gorguluarslan, R. M., Gandhi, U. N., Mandapati, R. & Choi, S. K. (2016). Design and fabrication of periodic lattice-based cellular structures. Computer-Aided Design and Applications, 13(1), 50-62. https://doi.org.10.1080/16864360.2015.1959194.

Hedayati, R., Sadighi, M., Mohammadi Aghdam, M. & Zadpoor, A. A. (2016). Mechanical properties of additively manufactured thick honeycombs. Materials, 9(8), 613.

Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O. & Brandt, M. (2019). SLM lattice structures: Properties, performance, applications and challenges. Materials & Design, 183, 108137. https://doi.org.10.1016/j.matdes.2019.108137.

Mohammadi, H., Ahmad, Z., Petrů, M., Mazlan, S. A., Johari, M. A. F., Hatami, H. & Koloor, S. S. R. (2023). An insight from nature: honeycomb pattern in advanced structural design for impact energy absorption. Journal of Materials Research and Technology, 22, 2862-2887. https://doi.org.10.1016/j.mrt.2022.12.063.

Nadkarni, I., & Satpute, P. (2021). Experimental and numerical investigation of out-of-plane crushing behaviour of aluminium honeycomb material. Materials Today: Proceedings, 38(1), 313-318. https://doi.org.10.1016/j.matpr.2020.07.378.

Nayak, S. K. (2010). Optimization of honeycomb core sandwich panel to mitigate the effects of air blast loading. (Tesis de Grado, The Pennsylvania State University). USA.

Orrego-Caicedo, C. J. (2014). Simulación por medio de elementos finitos del comportamiento de honeycombs de aluminio sometidos a compresión cuasi-estática. (Tesis de Grado, Universidad de los Andes).

Palomba, G., Epasto, G., Sutherland, L. & Crupi, V. (2022). Aluminium honeycomb sandwich as a design alternative for lightweight marine structures. Ships and Offshore Structures, 17(10), 2355-2366. https://doi.org.10.1080/17445302.2021.1996109.

Raghavendra, S., Molinari, A., Fontanari, V., Dallago, M., Luchin, V., Zappini, G. & Benedetti, M. (2020). Tension-compression asymmetric mechanical behaviour of lattice cellular structures produced by selective laser melting. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(16), 3241-3256.

Rupani, S. V., Acharya, G. & Jani, S. S. (2017). Design, modelling and manufacturing aspects of honeycomb sandwich structures: a review. International Journal of Scientific Development and Research, 2(4), 526-532.

Thomas, T. & Tiwari, G. (2019). Crushing behavior of honeycomb structure: a review. International Journal of Crashworthiness, 24(5), 555-579. https://doi.org.10.1080/13588265.2018.1480471.

Uğur, L., Duzcukoglu, H., Sahin, O. S. & Akkuş, H. (2020). Investigation of impact force on aluminium honeycomb structures by finite element analysis. Journal of Sandwich Structures & Materials, 22(1), 87-103. http://doi.org.10.1177/1099636217733235.

Wang, Z. (2019). Recent advances in novel metallic honeycomb structure. Composites Part B: Engineering, 166, 731-741. http://doi.org.10.1016/compositesb.2019. 02.011.

Wang, Z., Yao, S., Lu, Z., Hui, D. & Feo, L. (2016). Matching effect of honeycomb-filled thin-walled square tube-experiment and simulation. Composite Structures, 157, 494-505.

Xu, S., Beynon, J. H., Ruan, D. & Lu, G. (2012). Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Composite Structures, 94(8), 2326-2336. http://doi.org.10.1016/j.compstruct.2012.02.024.

Zhang, Y., Li, Y., Guo, K. & Zhu, L. (2021). Dynamic mechanical behaviour and energy absorption of aluminium honeycomb sandwich panels under repeated impact loads. Ocean Engineering, 219: 108344. http://doi.org.10.1016/j.oceaneng.2020.108344.

Zhang, X., Zhang, H. & Wen, Z. (2014). Experimental and numerical studies on the crush resistance of aluminum honeycombs with various cell configurations. International Journal of Impact Engineering, 66, 48-59. http://doi.org.10.1016/j.ijimpeng.2013.12.0089.

Published

2024-03-01

How to Cite

Cuevas-Lozano, B., Mariño-Cala, M., & Sánchez-Hechavarría, Y. (2024). Modeling of the compression behavior of a sandwich panel with a honeycomb structure. Ciencia & Futuro, 14(1), 12–26. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/2482

Issue

Section

Ciencia Universitaria