Mathematical modeling of Ni-lateritic ore drying in a rotary cylindrical kiln on a semi-industrial scale

Authors

Keywords:

mathematical modeling, thermal drying, lateritic Ni-ore, rotating horizontal cylinder, energy balance

Abstract

The lack of knowledge about the relationship between variables that characterize the thermal drying process prevents reaching the required moisture values in the Ni-lateritic ore at the exit of the rotating horizontal cylinder on a semi-industrial scale, with lowest possible fuel consumption and least impact on environment. For this reason, a steady state phenomenological model was established. This model consists of a system of differential equations and ordinary equations obtained from the mass and energy balances in the Ni-laterites ore, in the gas and in the wall of the dryer. Besides, from the bond equations that allow obtaining the thermophysical properties of the Ni-ore laterites and gases and the heat and mass transfer coefficients involved in the process, solved by using the fourth order Runger-Kutta numerical method. This model allows establishing the distribution temperature behavior of the gas, the Ni-laterites ore and the variation of moisture of the last one along the entire cylinder length.

Downloads

Download data is not yet available.

References

Abbasfard, H.; Rafsanjani, H. H.; Ghader, S. and Ghanbari, M. 2013: Mathematical modeling and simulation of an industrial rotary dryer: a case study of ammonium nitrate plant. Powder technology, 239: 499-505.

Agustini, S. S. 2006: Regenerative action of the wall on the heat transfer for directly and indirectly heated rotary kilns. Doctoral thesis. Universität Magdeburg.

Arruda, E. B. 2008: Comparison of the performance of the roto-fluidized dryer and conventional rotary dryer. Federal University of Uberlândia.

Cao, W. F. and Langrish, T. A. G. 2000: The development and validation of a system model for a countercurrent cascading rotary dryer. Drying Technology, 18(1-2): 99-115.

Castaño, L. F.; Rubio, F. R. y Ortega, M. G. 2009: Modelado de secaderos rotatorios en isocorriente. Revista Iberoamericana de automática e informática industrial, 6(4): 32-43.

Douglas, P. L.; Kwade, A.; Lee, P. L. and Mallick, S. K. 1993: Simulation of a rotary dryer for sugar crystalline. Drying Technology, 11(1): 129-155.

Echeeri, A. and Maalmi, M. 2021: Performance evaluation of a rotary dryer in both co-current and counter-current configurations. Journal of Thermal Engineering, 7(14): 1945-1957.

Froment, G. F. and Bischoff, K. B. 1990: Chemical Reactor Analysis and Design. New York: John Wiley & Sons.

Gorog, J. P.; Adams, T. N. and Brimacombe, J. K. 1982: Regenerative heat transfer in rotary kilns. Metallurgical transactions B, 13: 153-163.

Goyal, A. and Bushra, A. 2018: Modelling and Simulation of Rotary Dryer for Wheat drying. Journal of Postharvest Technology, 6(1): 63-68.

Harriot, W. L. M. J. C. S. P. 2007. Operaciones unitarias en ingeniería química. 7ma ed. México D. F.: Mcgraw-Hill/Interamericana. ISBN 13: 978-970-10-6174-9.

Mujumdar, K. S.; Ganesh, K. V. and Kulkarni, S. B. 2007: Rotary Cement Kiln Simulator (RoCKS): Integrated Modeling of Pre-Heater, Calciner, Kiln and Clinker Cooler. Chemical Engineering Science, 62(9): 2590-2607.

Myklestad, O. 1963: Heat and Mass Transfer in Rotary Dryers. Chemical Engineering Progress Symposium Series, 59(41): 129–137.

Nonhebel, G. and Moss, A. A. H. 1971: Drying of Solids in the Chemical Industry. London.

Parra-Rosero, P. 2017: Modelación de un proceso de secado de cacao utilizando una cámara rotatoria cilíndrica y flujo de aire caliente. Tesis doctoral. Universidad de Piura. Perú.

Perazzini, H.; Perazzini, M. T.; Freire, F. B.; Freire, F. B. and Freire, J. T. 2021: Modeling and cost analysis of drying of citrus residues as biomass in rotary dryer for bioenergy. Renewable Energy, 175: 167-178.

Ponce De La Cruz, F.; Royo, J. and García, A. C. 2018: Modelo matemático de un secadero rotatorio: secado de biomasa sólida lignocelulósica. Revista Ingeniería Mecánica Tecnología y Desarrollo, 6(2): 031–043. ISSN 2448-5837.

Reay, D. 1979: Theory in the Desing of Dryers. Chem. Eng., 5(1): 501-506.

Sharples, K.; Glikin, P. G. and Warne, R. 1964: Computer simulation of rotary dryers. Transactions of the Institute of Chemical Engineers, 42: 275–284.

Souza, G. F. M. V.; Avendaño, P. S.; Francisquetti, M. C. C.; Ferreira, F. R. C.; Duarte, C. R. and Barrozo, M. A. S. 2021: Modeling of heat and mass transfer in a non-conventional rotary dryer. Applied Thermal Engineering, 182: 116118.

Yi, J.; Li, X.; He, J. and Duan, X. 2020: Drying efficiency and product quality of biomass drying: a review. Drying Technology, 38(15): 2039-2054.

Zalazar-Oliva, C. 2021: Modelación matemática del proceso de secado de mineral laterítico en secadores rotatorios. Tesis doctoral. Universidad de Moa. Cuba.

Zalazar-Oliva, C.; Góngora-Leyva, E.; Legrá-Lobaina, A. A.; Retirado-Mediaceja, Y. y Caneghem, J. V. 2021: Determinación del calor específico del mineral laterítico mediante el método de calorimetría diferencial de barrido. Minería y Geología, 37(3): 318-332.

Zalazar-Oliva, C.; Góngora-Leyva, E.; Retirado-Mediaceja, Y. y Sánchez-Escalona, A. A. 2019: Determinación de la conductividad térmica de menas lateríticas a partir del método de Hot-Ball. Minería y Geología, 35(4): 419-429.

Published

2023-07-11

How to Cite

Zalazar-Oliva, C., Góngora-Leyva, E., Legrá-Lobaina, A. A., León-Segovia, M. A., León-Segovia, M. A., & Laurencio-Alfonso, H. L. (2023). Mathematical modeling of Ni-lateritic ore drying in a rotary cylindrical kiln on a semi-industrial scale. Minería & Geología, 38(4), 346–362. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/2240

Most read articles by the same author(s)

<< < 1 2 3 4 5 > >>