Design of a dual bidirectional DC/DC converter for hybrid energy storage management in microgrids

Authors

Keywords:

Hybrid energy storage , Multivariable PI control, Smart microgrids, dual bidirectional DC/DC converter, Smart microgrids

Abstract

The efficient integration of renewable sources into microgrids requires advanced solutions to manage energy variability and ensure stability in the direct current (DC) bus. This article proposes a dual bidirectional DC/DC converter with a Buck-Boost topology, designed to independently control the energy flow between a hybrid energy storage system (batteries and supercapacitors) and a 48 V DC bus. The converter employs a closed-loop control scheme with three PI controllers, which simultaneously monitor and adjust: (1) the charge/discharge current of the storage devices, (2) the voltage across these elements, and (3) the DC bus voltage. Implemented in Simulink MATLAB R2023b and experimentally validated, the design demonstrated 94% efficiency, the ability to operate in boost mode (24 V → 48 V) and buck mode (48 V → 12 V), and active protection against battery voltage drops. The results highlight its capability to manage power peaks with supercapacitors and sustained demands with batteries, reducing thermal stress and extending their lifespan. This solution positions itself as a scalable alternative for resilient microgrids, optimizing renewable integration and ensuring stable power supply in dynamic scenarios.

Downloads

Download data is not yet available.

References

Abbasi, M. E. A., Aguilera, L., Li, R. P., Lu, D., & Wang, F. (2023). Review on the microgrid concept, structures, components, communication systems, and control methods. Energies 16(1), 484. https://doi.org/10.3390/en16010484.

Alasali, F. (2023). Powering up microgrids: A comprehensive review of innovative and intelligent protection approaches for enhanced reliability. Energy Reports, 10. https://10.1016/j.egyr.2023.08.068.

Asiaban, S., Kayedpour, N. Samani, A. E., Bozalakov, D., De Kooning, J.D.M., Crevecouer, G. & Vandevelde, L. (2021). Wind and solar intermittency and the associated integration challenges: A comprehensive review including the status in the Belgian power system. Energies, 14 (9), 2630 https://doi.org/10.3390/en14092630

Bechtle, P., Schmehl, M. S. R., Zillmann, U. & Watson, S. (2019). Airborne wind energy resource analysis. Renewable Energy, 141, 1103–1116. https://doi.org/10.1016/j.renene.2019.03.118

Beyers, I. A. B., Hanke-Rauschenbach, R. (2023). Ragone plots revisited: A review of methodology and application across energy storage technologies. Journal of Energy Storage, 73. https://doi.org/https://doi.org/10.1016/j.est.2023.109097.

Feterre, Y. (2025). Boost converter design SIMULINK. GitHub. https://github.com/yes42d/DC-DC-Boots-Converter-Design-SIMULINK

Gil-Gonzalez, W. (2024). Operación y control de convertidores DC-DC para aplicación de microrredes con generación renovable y sistemas de almacenamiento de energía. https://ruja.ujaen.es/bitstream/10953/2720/1/24_01_17_Tesis%20WJGG_Final%20sin%20articulos.pdf

González, C., Goberna, C., & Navarro, E. (2021). Power density vs. energy density in supercapacitors: A trade-off for modern energy storage systems. Energy Storage, 36(102398). https://doi.org/10.1016/j.est.2021.102398

Guevara-Calderón, M. P. V. (2024). Exploración de Estrategias Tecnológicas en la Integración de Fuentes Renovables con Sistemas Electromecánicos. Polo de conocimiento, 9(92), 1448-1463. https://doi.org/10.23857/pc.v9i7.7576

Jing, W. C. H. L., Wong, S. H. W. & Wong, M. L. D. (2017). Battery-supercapacitor hybrid energy storage system in standalone dc microgrids. IET Renewable Power Generation, 11, 461–469. https://doi.org/10.1049/ietrpg.2016.0500

Haque, I. K., Sharma, A., Mohammad, A. & Khan, S. I. (2024). Analysis of diffrent control approaches for a local microgrid: A comparative study. Control Systems and Optimization Letters, 2, 94–98. https://doi.org/10.59247/csol.v2i1.88

Kazerani, K. Z. M. (2014). Development of a hybrid energy storage system (HESS) for electric and hybrid electric vehicles. IEEE Transportation Electrification Conference and Expo (ITEC), 1-5. https://doi.org/10.1109/ITEC.2014.6861868

Li, B. C. X., Li, C. & Guan, Z. (2017). Working principle analysis and control algorithm for bidirectional dc/dc converter. Journal of Power Technologies, 97, 327–335. https://www.researchgate.net/publication/336124475_Working_principle_analysis_and_control_algorithm_for_bidirectional_DCDC_converter#fullTextFileContent.

Pandey, K. K., Kumar, M., Kumari, A., Kumar, J. (2021). Bidirectional DC-DC Buck-Boost Converter for Battery Energy Storage System and PV Panel https://link.springer.com/chapter/10.1007/978-981-15-9829-6_54#citeas. http://doi.org/10.1007/978-981-15-9829-6_54

Power, E. (2021). Convertidores bidireccionales DC/DC y aplicaciones comunes. https://epicpower.es/2021/07/convertidores-bidireccionales-dc-dc-y-aplicaciones-comunes/

Rashid, M. H. (2013). Power Electronics: Circuits, Devices and Applications (4 ed.). Pearson Educación. https://www.google.com.cu/books/edition/_/fEycngEACAAJ?hl=es&sa=X&ved=2ahUKEwjmnoXn4aqLAxX3SzABHf4UOdEQre8FegQIExAL

Robert, W., Erickson, D. M. (2020). Fundamentals of power electronics (3 ed.). 14 jul 2020. ISBN: 3030438813,9783030438814. https://books.google.com.cu/books/about/Fundamentals_of_Power_Electronics.html?id=nhrxDwAAQBAJ&redir_esc=y

Wang, L., Chen, B., & Patel, R (2023). Advances in hybrid energy storage systems: Bridging the gap between supercapacitors and lithium-ion batteries. Energy Conversion and Management, 278, 116734. https://doi.org/10.1016/j.enconman.2023.116734

Zhang, Y., Li, X., & Wang, Z (2020). Comparative analysis of lithium-ion batteries and supercapacitors: Energy and power density perspectives. Renewable and Sustainable Energy Reviews 134, 110292. https://doi.org/10.1016/j.rser.2020.110292

Published

2025-03-07

How to Cite

Pérez-Aballe, O., Ruiz-Chavarría, G., Vázquez-Seis Dedos, L., & Columbié-Navarro, Ángel O. (2025). Design of a dual bidirectional DC/DC converter for hybrid energy storage management in microgrids. Minería & Geología, 41(1), 83–101. Retrieved from https://revista.ismm.edu.cu/index.php/revistamg/article/view/2701

Most read articles by the same author(s)

1 2 > >>