Transformation of the foundry structure into alloy steel

Authors

  • Liennis Gómez-Herrera Empresa MoaNickel.SA, Moa
  • Ledennis Suárez-Torres Universidad de Moa
  • Tomás Fernández-Columbié Universidad de Moa
  • Anabel Ruiz-Padilla Universidad de Moa

Keywords:

foundry, alloy steel, microstructure, solidification, wear.

Abstract

The transformations in the cast structures of an alloy steel 39CrNiMo (AISI 4340) used for wear elements were determined.. Three samples were analyzed each one on the edge, between the center and the edge and the center, the same procedure used for the measurement of hardness. It was determined that, on the edge of each one of them, martensite is the phase with the greatest presence, preceded by ferrite and some precipitates, which was characterized in the analysis of the microconstituents with the percentage that they occupy. The hardness ranged from 372 HV at the edge to 340.5 at the center associated with the solidification process. 

Downloads

Download data is not yet available.

References

ABBRUZZESE, G.& FORTUNATI, S. 1988. Influencia de la dispersión del precipitado y las diferencias de texturas a través del espesor de la lámina sobre el crecimiento selective del grano en el silicio-hierro. Revista de física aplicada 64(10): 5344-5346.

ALCÁNTARA, D.; FERNÁNDEZ-COLUMBIÉ, T. & RODRÍGUEZ, I. 2008. Comportamiento de las capas deformadas por rodadura en los equipos de laboreo minero. NEXO 21(01): 26-32.

ALCÁNTARA, D.; FERNÁNDEZ-COLUMBIÉ, T. & RODRÍGUEZ, I. 2009. Comportamiento de las capas superficiales deformadas plásticamente por el desgaste en elementos circulares. Ciencias Holguín 17(4): 1-4.

ASKELAND, D. & PHULÉ, P. 2010. Ciencia e ingeniería de los materiales, Cengage Learning Editores, 4ª ed., p. 341. México.

ASKELAND, D.; FULAY, P. & WRIGHT, W. 2011. The Science and Engineering of Materials, 6th Edition. Cengage Learning, Stamford.

ASKELAND, D. & WRIGHT, W. 2016. Ciencia e Ingeniería de materiales. Séptima Edición. Cengage Learning Editores, Ciudad de México, México.

BASSO, A.; CALDERA, M.; RIVERA, G. & SIKORA, J. 2012. High silicon ductile iron: possible uses in the production of parts with “dual phase ADI” microstructure. ISIJ International 52(6): 1130-1134.

BHATTACHARYA, J.; FARMACEÚTICA, MP Y HRM, MBA. 2014. Root cause analysis a practice to understanding and control the failure management in manufacturing industry. International Journal of Bussiness and Management Inventory 3(10): 12-20.

JU, S. 2008. Characterization of bainitic microstructures in low carbon HSLA steels. International Journal of Modern Phisics B. 22(31): 5965-5970.

KERMANPUR, A.; MAHMOUDI, S. & HAJIPOUR, A. 2008. Numerical simulation of metal flow and solidification in the multi-cavity casting moulds of automotive components. Journal of Materials Processing Technology 206(1-3): 62-68.

KOROLCZUK-HEJNAK, M. & MIGAS, P. 2012. Analysis of selected liquid steel viscosity. Archives of Metallurgy and Materials 57(4): 963-969.

NICOT, A.; FERNÁNDEZ-COLUMBIÉ, T. & CASTILLO, R. 2020. Dominios magnéticos en el acero AISI 4340 tratado térmicamente y soldado con electrodos revestido. Ciencia & Futuro 9(4): 70-85.

SHARMA, A.; KUMAR, A. & TYAGI, R. 2014. Erosive wear analysis of medium carbon dual. Wear 1(1): 1-16.

Published

2022-09-09

How to Cite

Gómez-Herrera, L., Suárez-Torres, L., Fernández-Columbié, T., & Ruiz-Padilla, A. (2022). Transformation of the foundry structure into alloy steel. Ciencia & Futuro, 12(3), 341–355. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/2189

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)

<< < 1 2 3 > >>