Thermal model of the radial friction welding process in the joinning of dissimilar materials

Authors

  • Arletis Romero Fernández Empresa METUNAS
  • Yunaidys Paumier Castañeda Consejo Administración Moa
  • Roberto Méndez Cortina Instituto Politécnico Sagua de Tánamo
  • Ledennis Suárez Torres Universidad de Moa

Keywords:

alloy steel, rotational friction, virtual simulation, metallurgical union

Abstract

Through finite elements, the thermal model of the radial friction welding process in the union of dissimilar materials between AISI 316L stainless steel and Cu-DHP copper was obtained, using the ANSYS Workbench software. The parameters were selected for the thermal modeling of the process, which were used for meshing and friction pressure assignment. It was determined that, in the thermal model, to achieve the bond between AISI 316L and Cu-DHP copper, friction occurs below its melting point at 756 oC, with a decrease to 748 oC during the forging temperature with a time of 14 s, with an increase in temperature of 756 oC and stresses up to 662,540 MPa, which is associated with the parameters of the radial friction welding process.

Downloads

Download data is not yet available.

References

Alavala, C. (2016). Weldability of Friction Welding Process for AA 2024 Alloy and SS304 Stainless Steel using Finite Element Analysis. Int. Journal of Engineering Research and Application, 6(3), 53-57. https://jntuhceh.ac.in/web/tutorials/faculty/1173_I-162.pdf

Guzmán-Romero, E., Fernández-Columbié, T., Alcántara, D. & Rodríguez, I. (2017). Efecto de la velocidad angular y la presión en el proceso de soldadura por fricción radial en una aleación de aluminio AA 5754. Minería y Geología, 33(3), 312-325. http://scielo.sld.cu/scielo.php?pid=S1993-01(2(2017000300005&script=sci_arttext

Koteswara, P., Mohan, V., Surya, N. & Krishna, G. (2017). Effect of speed on hardness in rotary friction welding process. International Journal of Materials Science, 12(4), 635-641.

Kumar, T. & Reddy, A. (2015). Finite Element Analysis of Friction Welding Process for 2024 Al Alloy and AISI 1021 Steel. International Journal of Science and Research (IJSR), 4(5), 1679-1684. https://jntuhceh.ac.in/faculty_portal/uploads/staff_downloads/905_I-91.pdf

Maalekian, M., Kozeschnik, E., Brantner, H. & Ceriak, H. (2008). Comparative analysis of heat generation in friction welding of steel bars. Acta Materialia, 56(12), 2843-2855. https://doi.org/10.1016/j.actamat. 2008.02.016

Mercan, S., Aydin, S. & Ozdemir, N. (2015). Effect of welding parameters on the fatigue properties of dissimilar AISI (2(205-AISI 10(20 joined by friction welding. International Journal of Fatigue, 81(12), 78-90. https://www.sciencedirect.com/science/article/abs/pii/S014(211(231500(23(27

Ngombo-Dombaxe, R., Fernández-Columbié, T., Gresesqui, E. & Sánchez-Olivero, E. (2022). Temperaturas generadas en una soldadura por fricción radial disímil mediante elementos finitos. Ciencia & Futuro, 11(4), 68-79. https://revista.ismm.edu.cu/index.php/revistacyf/article/view/(2108

Reddy, A. (2015). Fatigue life evaluation of joint designs for friction welding of mild steel and austenite stainless steel. International Journal of Science and Research, 4(2), 1714-1719. http://jntuhceh.ac.in/faculty_portal/uploads/staff_downloads/880_I-66.pdf

Rodríguez, I., Hernaldo, T., Guardado, R., Ngendanzi, V. (2007). Modelación por Elementos Finitos de la ruptura del tubo en el transportador de mineral laterítico reducido. Minería y Geología, 23(4), 1-13. https://www.redalyc.org/pdf/2235/223515990005.pdf

Seshagirirao, B., Sivaramakrishna, V. & Saikrishnaprasad, G. (2015). Experimental investigation of rotary friction welding parameters of aluminum (H-30) and mild steel (AISI-1040). International Journal of Innovative Research in Science, Engineering and Technology, 4(5), 2920-2925. https://www.academia.edu/download/105193110/35_EXPERIMENTAL.pdf

Shanjeevi, C., Jeswin. J., Arputhabalan, R., Dutta, D. & Pradeep, S. (2017). Investigation on the effect of friction welding parameters on impact strength in dissimilar joints. Materials Science and Engineering, 197(100), 3-7. https://iopscience.iop.org/article/10.1088/1757-899X/197/1/012069/meta

Suárez-Torres, L., Fernández-Columbié, T., Marzo, Y. & Guzmán, E. (2022). Empleo del fenómeno de la fricción rotativa en máquina torno para la unión de aleaciones disímiles. Ciencia & Futuro, 12(3), 328-340. http://revista.ismm.edu.cu/index.php/revistacyf/article/view/2188

Suppachai, C., Chaiyoot, M. & Muhamad, T. (2017). Rotary friction welding of dissimilar joints between SSM356 and SSM6061 Aluminum Alloys Produced by GISS. Engineering Journal, 21(1), 181-191. https://engj.org/index.php/ej/article/view/1123

Published

2024-06-10

How to Cite

Romero Fernández, A., Paumier Castañeda, Y., Méndez Cortina, R., & Suárez Torres, L. (2024). Thermal model of the radial friction welding process in the joinning of dissimilar materials. Ciencia & Futuro, 14(2), 184–198. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/2546

Issue

Section

Ciencia Universitaria

Most read articles by the same author(s)