Musical practice and cognitive functioning

Authors

  • Areta Ortega-Orozco Universidad Nacional Autónoma de México
  • Gabriela Orozco-Calderón Universidad Nacional Autónoma de México

Keywords:

cognitive functions, sound perception, neuro plasticity, neuropsychology, musical brain.

Abstract

The aim of this review is to know the state of the art about musical perception skills and its effect on brain cognitive functions. Both the origin and function of music and its processing is of interest to psychology and has been explained as a functional and structural plasticity model in which the involved areas and connections are modified, these changes depend on different variables, including the beginning of training and constant practice. Neuroimaging studies together with tasks that include musical stimulus have supported these changes and can differentiate musicians from non-musicians in terms of volume and activation of specific areas. The study of other cognitive functions (non-musical directly) in professional musicians has recently gained importance and it is being studied how musical practice can influence these cognitive functions and the neuropsychological tests provide valuable information for this purpose.

Downloads

Download data is not yet available.

Author Biographies

Areta Ortega-Orozco, Universidad Nacional Autónoma de México

Psicología

Gabriela Orozco-Calderón, Universidad Nacional Autónoma de México

Psicología

References

ALOSSA, N. & CASTELLI, L. 2009. Amusia and musical functioning. European Neurology 61(5): 269-277.

ARIAS, M. 2007. Music and neurology. Neurologia 22(1): 39-45.

BERMÚDEZ, P.; LERCH, J. P.; EVANS, A. C. & ZATORRE, R. J. 2009. Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cerebral Cortex 19(7): 1583-1596.

CASARES, N.; TORRES, M. B.; WALSH, S. F. & GONZÁLEZ-SANTOS, P. 2013. Modelo de cognición musical y amusia. Neurología 28(3): 179-186.

CELIS, V. G.; PECHONKINA, I. M. & GOODIN, A. D. 2014. La relación entre los procesos de lecto-escritura y la música desde la perspectiva neurocognitiva. Revista chilena de Neuropsicología 9(12): 21-24.

CHAN, A. S.; HO, Y. C. & CHEUNG, M. C. 1998. Music training improves verbal memory. Nature 396(6707): 128.

CLAYTON, K. K.; SWAMINATHAN, J.; YAZDANBAKHSH, A.; ZUK, J.; PATEL, A. D. & KIDD, G. 2016. Executive function, visual attention and the cocktail party problem in musicians and non-musicians. PLoS ONE 11(7): 1–17.

COGO, H.; BRANDAO, C.; PLOUBIDIS, G.; MARI, J. 2013. Pathway evidence of how musical perception predics word-level reading ability in children with reading difficulties. Plosone 8(12): e84375.

DARWIN, C. 1909. El origen del hombre. Valencia: Siempre editores. Disponible en: https://medicina.ufm.edu/images/7/7c/Elorigendelhombre_POR_CHARLES_DARWIN.pdf

DAWN, L.; MERRETT, D. L. & WILSON, S. J. 2011. Music and Neural Plasticity. Lifelong Engagement with Music. Chapter 7. En: Rickard, N. Lifelong Engagement with Music. Benefits for Mental Health and Well-Being (p. 123-161). Nova Science Publishers Inc., New York.

GASER, C. & SCHLAUG, G. 2003. Brain structures differ between musicians and non-musicians. Journal of Neurosciences 23(27): 9240–9245.

GÓMEZ, E.; OSTROSKY, F. & PRÓSPERO, O. 2003. Desarrollo de la atención, la memoria y los procesos inhibitorios: relación temporal con la maduración de la estructura y la función cerebral. Revista de Neurología 37(6): 561-567.

GRIMAULT, S.; NOLDEN, S.; LEFEBVRE, C.; VACHON, F.; HYDE, K.; PERETZ, I.; ZATORRE, R.; ROBITAILLE, N. & JOLICOEUR, P. 2014. Brain activity is related to individual differences in the number of items stored in auditory short-term memory for pitch: Evidence from magnetoencephalography. Neuroimage 94: 96-106.

HYDE, K. L.; LERCH, J.; NORTON, A.; FORGEARD, M.; WINNER, E.; EVANS, A. C. & Schlaug G. 2009. The effects of musical training on structural brain development a longitudinal study. Annals of the New York. Academy Sciences 1169: 182–186.

IZQUIERDO, M.; OLIVER, D. & MALMIERCA, M. 2009. Mecanismos de plasticidad (funcional y dependiente de actividad) en el cerebro auditivo adulto y en desarrollo. Revista de Neurología 48(8): 421-499.

KLEIM, J. A. & JONES, T. A. 2008. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. Journal of Speech Language and Hearing Research 51(1): 225-239.

LEE, D. J.; CHEN, Y. & SCHLAUG, G. 2003. Corpus callosum: musician and gender effects. NeuroReport 14(2): 205-209.

LI, S.; HAN, Y.; WANG, D.; YANG, H.; FAN, Y.; LV, Y.; ... & HE, Y. 2009. Mapping surface variability of the central sulcus in musicians. Cerebral Cortex 20(1): 25-33.

MANSENS, D.; DEEG, J. H. & COMIJS, H. C. 2017. The association between singing or playing a musical instrument and cognitive functions in older adults. Aging & Mental Health 22(8): 970-977.

MATHIAS, B.; TILLMANN, B. & PALMER, C. 2016. Sensory, Cognitive, and sensoriomotor learning effects in recognition memory for music. Journal of cognitive neuroscience 28(8): 1111-1126.

MERRETT, D. L.; PERETZ, I. & WILSON, S. J. 2013. Moderating variables of music training-induced neuroplasticity: a review and discussion. Frontiers in Psycholy 4: 606.

MIENDLARZEWSKA, E. & TROST, W. 2014. How musical training affects cognitive development: rhythm, reward and other modulating variables. Frontiers in Neuroscience 7(279).

OSTROSKY, F.; GÓMEZ, E.; ARDILA, A.; ROSSELLI, M.; PINEDA, D. & MATUTE, E. 2012. Neuropsi. Atención y memoria. Protocolo de aplicación. 2ª edición. Manual Moderno, México.

PATEL, A. D. 2003. Language, music, syntax and the brain. Nature Neuroscience 6(7): 674–681.

PENHUNE, V. B. 2011. Sensitive periods in human development: evidence from musical training. Cortex 47(9): 1126–1137.

PERETZ, I. & COLTHEART, M. 2003. Modularity of music processing. Nature Neuroscience 6(7): 688- 691.

PERETZ, I.; CUMMINGS, S. & DUBE, M. 2007. The genetics of congenital amusia (tone deafness): a family-aggregation study. American Journal of Human Genetics 81(3): 582–588.

PINKER, S. 1997. How the Mind Works. Disponible en: https://es.scribd.com/document/334416408/steven-pinker-1997-how-the-mind-works-pdf

PROVERBIO, A.; OZZI, M.; ORLANDI, A. & CARMINATI, M. 2017. Error-related negativity in the skilled brain of pianists reveals motor simulation. Neuroscience 346: 309-319.

RODRIGUEZ, A. C.; LOUREIRO, M. & CARAMELLI, P. 2014. Visual memory in musicians and non-musicians. Frontiers in Human Neuroscience 8(424): 1-10.

SÄRKÄMÖ, T.; TERVANIEMI, M.; SOINILA, S.; AUTTI, T.; SILVENNOINEN, H.; LAINE, M.; HIETANEN, M. & PIHKO, E. 2010. Auditory and cognitive deficits associated with acquired amusia after stroke: a magnetoencephalography and neuropsychological follow-up study. Nature Neurosciennce 5(12): 1-12.

SCHLAUG, G.; NORTON, A.; OVERY, K. & WINNER, E. 2005. Effects of music training on the child's brain and cognitive development. Annals of the New York Academy of Sciences 1060(1): 219-230.

SORIA, G.; DUQUE, P. & GARCÍA, M. 2011. Música y cerebro: Fundamentos neurocientíficos y trastornos musicales. Revista de Neurología 52(1): 45-55.

THOMPSON, S.; HAGOORT, P.; FORD, D.; HONING, H.; KOELSCH, S.; LADD, D. R.; LERDAHL, F.; LEVINSON, S. C. & STEEDMAN, M. 2013. Multiple levels of structure in language and Music. En: M. A. Arbib (Ed). Language, Music, and the Brain: A mysterious relationship. Massachusetts Institute of Technology and the Frankfurt Institute for Advances Studies (p. 289-306).

WATANABE, D.; SAVION-LEMIEUX, T. & PENHUNE, V. B. 2007. The effect of early musical training on adult motor performance: evidence for a sensitive period in motor learning. Experimental Brain Research 176(2): 332–340.

Published

2019-05-29

How to Cite

Ortega-Orozco, A., & Orozco-Calderón, G. (2019). Musical practice and cognitive functioning. Ciencia & Futuro, 9(2), 128–143. Retrieved from https://revista.ismm.edu.cu/index.php/revistacyf/article/view/1798

Most read articles by the same author(s)

1 2 3 > >>